Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Glucocorticoids play an important role in adipogenesis through the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90NHsp70 and one high molecular weight immunophilin, either FKBP51 or FKBP52. When 3T3-L1 preadipocytes are induced to differentiate, FKBP51 expression progressively increases, whereas FKBP52 decreases, and Hsp90, Hsp70, p23 and Cyp40 remain unchanged. Interestingly, FKBP51 rapidly translocates from mitochondria to the nucleus where it is retained upon its interaction with chromatin and the nuclear matrix. FKBP51 nuclear localization is transient, and after 48 hours it cycles back to mitochondria. Importantly, this dynamic FKBP51 mitochondrial-nuclear shuttling depends on PKA signaling, because its inhibition by PKI or knockdown of PKA-ca by siRNA, prevented FKBP51 nuclear translocation induced by IBMX. In addition, the electrophoretic pattern of migration of FKBP51 is altered by treatment of cells with PKI or knockdown of PKA-ca, suggesting that FKBP51 is a PKA substrate. In preadipocytes, FKBP51 colocalizes with PKA-ca in mitochondria. When adipogenesis is triggered, PKA-ca also moves to the nucleus colocalizing with FKBP51 mainly in the nuclear lamina. Moreover, FKBP51 and GR interaction increases when preadipocytes are induced to differentiate. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyrylcAMP, compounds that induced FKBP51 nuclear translocation, but not by a specific activator of EPAC. FKBP51 knockdown facilitates adipogenesis, whereas ectopic expression of FKBP51 blocks adipogenesis. These findings indicate that the dynamic mitochondrial- nuclear shuttling of FKBP51 regulated by PKA may be key in fine-tuning the transcriptional control of GR target genes required for the acquisition of adipocyte phenotype © 2013. Published by The Company of Biologists Ltd.


Documento: Artículo
Título:Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation
Autor:Toneatto, J.; Guber, S.; Charó, N.L.; Susperreguy, S.; Schwartz, J.; Galigniana, M.D.; Piwien-Pilipuk, G.
Filiación:Laboratory of Nuclear Architecture, Instituto de Biologĺa y Medicina Experimental (IByME) - CONICET, Buenos Aires C1428ADN, Argentina
Instituto de Investigaciones Bioquĺmicas de Buenos Aires (IIBBA) - CONICET, Buenos Aires C1428ADN, Argentina
Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109-0622, United States
Departamento de Quĺmica Bioló gica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
Palabras clave:Adipogenesis; FKBP51; Glucocorticoid receptor; PKA; bucladesine; cyclic AMP dependent protein kinase; fkbp51 protein; forskolin; glucocorticoid receptor; immunophilin; isobutylmethylxanthine; lamin B; protein kinase a c alpha; small interfering RNA; unclassified drug; adipocyte; adipogenesis; animal cell; article; cell differentiation; cell nucleus matrix; cellular distribution; chromatin; controlled study; electrophoretic mobility; enzyme inhibition; enzyme substrate; gene expression regulation; gene silencing; human; human cell; intracellular signaling; mitochondrion; mouse; nonhuman; nuclear lamina; priority journal; proadipocyte; protein localization; protein protein interaction; protein transport; transcription regulation; Adipogenesis; FKBP51; Glucocorticoid receptor; PKA; 1-Methyl-3-isobutylxanthine; 3T3-L1 Cells; Adipogenesis; Animals; Cell Differentiation; Cell Nucleus; Chromatin; Colforsin; Cyclic AMP-Dependent Protein Kinases; Gene Expression Regulation; HSP70 Heat-Shock Proteins; HSP90 Heat-Shock Proteins; Mice; Mitochondria; Peptides; Protein Binding; Protein Kinase C-alpha; Protein Kinase Inhibitors; Protein Transport; Receptors, Glucocorticoid; RNA, Small Interfering; Signal Transduction; Tacrolimus Binding Proteins
Página de inicio:5357
Página de fin:5368
Título revista:Journal of Cell Science
Título revista abreviado:J. Cell Sci.
CAS:bucladesine, 16980-89-5, 362-74-3; forskolin, 66575-29-9; isobutylmethylxanthine, 28822-58-4


  • Aksoy, M.O., Mardini, I.A., Yang, Y., Bin, W., Zhou, S., Kelsen, S.G., Glucocorticoid effects on the beta-adrenergic receptor-adenylyl cyclase system of human airway epithelium (2002) J. Allergy Clin. Immunol., 109, pp. 491-497
  • Andrés, V., González, J.M., Role of A-type lamins in signaling, transcription, and chromatin organization (2009) J. Cell Biol., 187, pp. 945-957
  • Bains, G., Lithgow, T., The Tom channel in the mitochondrial outer membrane: alive and kicking (1999) Bioessays, 21, pp. 1-4
  • Baus, E., Van Laethem, F., Andris, F., Rolin, S., Urbain, J., Leo, O., Dexamethasone increases intracellular cyclic AMP concentration in murine T lymphocyte cell lines (2001) Steroids, 66, pp. 39-47
  • Cheung-Flynn, J., Prapapanich, V., Cox, M.B., Riggs, D.L., Suarez-Quian, C., Smith, D.F., Physiological role for the cochaperone FKBP52 in androgen receptor signaling (2005) Mol. Endocrinol., 19, pp. 1654-1666
  • Cook, P.R., The organization of replication and transcription (1999) Science, 284, pp. 1790-1795
  • D'Angelo, M.A., Hetzer, M.W., The role of the nuclear envelope in cellular organization (2006) Cell. Mol. Life Sci., 63, pp. 316-332
  • Davies, T.H., Ning, Y.M., Sánchez, E.R., A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins (2002) J. Biol. Chem., 277, pp. 4597-4600
  • Doucas, V., Shi, Y., Miyamoto, S., West, A., Verma, I., Evans, R.M., Cytoplasmic catalytic subunit of protein kinase A mediates cross-repression by NFkappa B and the glucocorticoid receptor (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 11893-11898
  • Echeverría, P.C., Mazaira, G., Erlejman, A., Gomez-Sanchez, C., Piwien Pilipuk, G., Galigniana, M.D., Nuclear import of the glucocorticoid receptorhsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin beta (2009) Mol. Cell. Biol., 29, pp. 4788-4797
  • Enserink, J.M., Christensen, A.E., de Rooij, J., van Triest, M., Schwede, F., Genieser, H.G., Døskeland, S.O., Bos, J.L., A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK (2002) Nat. Cell Biol., 4, pp. 901-906
  • Fey, E.G., Krochmalnic, G., Penman, S., The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy (1986) J. Cell Biol., 102, pp. 1654-1665
  • Flegal, K.M., Carroll, M.D., Kit, B.K., Ogden, C.L., Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010 (2012) JAMA, 307, pp. 491-497
  • Fu, M., Sun, T., Bookout, A.L., Downes, M., Yu, R.T., Evans, R.M., Mangelsdorf, D.J., A Nuclear Receptor Atlas: 3T3-L1 adipogenesis (2005) Mol. Endocrinol., 19, pp. 2437-2450
  • Gaillard, D., Wabitsch, M., Pipy, B., Négrel, R., Control of terminal differentiation of adipose precursor cells by glucocorticoids (1991) J. Lipid Res., 32, pp. 569-579
  • Galigniana, M.D., Steroid receptor coupling becomes nuclear (2012) Chem. Biol., 19, pp. 662-663
  • Galigniana, M.D., Radanyi, C., Renoir, J.M., Housley, P.R., Pratt, W.B., Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus (2001) J. Biol. Chem., 276, pp. 14884-14889
  • Galigniana, M.D., Erlejman, A.G., Monte, M., Gomez-Sanchez, C., Piwien-Pilipuk, G., The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events (2010) Mol. Cell. Biol., 30, pp. 1285-1298
  • Gallo, L.I., Ghini, A.A., Piwien Pilipuk, G., Galigniana, M.D., Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity (2007) Biochemistry, 46, pp. 14044-14057
  • Gallo, L.I., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D., The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress (2011) J. Biol. Chem., 286, pp. 30152-30160
  • Gaya, M., Repetto, V., Toneatto, J., Anessini, C., Piwien-Pilipuk, G., Moreno, S., Antiadipogenic effect of carnosic acid, a natural compound present in Rosmarinus officinalis, is exerted through the C/EBPs and PPARgamma pathways at the onset of the differentiation program (2013) Biochim. Biophys. Acta, 1830, pp. 3796-3806
  • Gottlieb, R.A., Granville, D.J., Analyzing mitochondrial changes during apoptosis (2002) Methods, 26, pp. 341-347
  • Green, H., Kehinde, O., An established preadipose cell line and its differentiation in culture.II. Factors affecting the adipose conversion (1975) Cell, 5, pp. 19-27
  • Gregoire, F.M., Smas, C.M., Sul, H.S., Understanding adipocyte differentiation (1998) Physiol. Rev., 78, pp. 783-809
  • Grossmann, C., Ruhs, S., Langenbruch, L., Mildenberger, S., Strätz, N., Schumann, K., Gekle, M., Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling (2012) Chem. Biol., 19, pp. 742-751
  • Guenatri, M., Bailly, D., Maison, C., Almouzni, G., Mouse centric and pericentric satellite repeats form distinct functional heterochromatin (2004) J. Cell Biol., 166, pp. 493-505
  • Hartmann, J., Wagner, K.V., Liebl, C., Scharf, S.H., Wang, X.D., Wolf, M., Hausch, F., Touma, C., The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress (2012) Neuropharmacology, 62, pp. 332-339
  • Kershaw, E.E., Morton, N.M., Dhillon, H., Ramage, L., Seckl, J.R., Flier, J.S., Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity (2005) Diabetes, 54, pp. 1023-1031
  • Klaus, S., Adipose tissue as a regulator of energy balance (2004) Curr. Drug Targets, 5, pp. 241-250
  • Lefterova, M.I., Zhang, Y., Steger, D.J., Schupp, M., Schug, J., Cristancho, A., Feng, D., Liu, X.S., PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale (2008) Genes Dev., 22, pp. 2941-2952
  • Liao, J., Piwien-Pilipuk, G., Ross, S.E., Hodge, C.L., Sealy, L., MacDougald, O.A., Schwartz, J., CCAAT/Enhancer-binding protein beta (C/EBP beta) and C/EBPd contribute to growth homone-regulated transcription of c-fos (1999) J. Biol. Chem., 274, pp. 31597-31604
  • Martini, C.N., Plaza, M.V., Vila, M.C., PKA-dependent and independent cAMP signaling in 3T3-L1 fibroblasts differentiation (2009) Mol. Cell. Endocrinol., 298, pp. 42-47
  • Masuzaki, H., Paterson, J., Shinyama, H., Morton, N.M., Mullins, J.J., Seckl, J.R., Flier, J.S., A transgenic model of visceral obesity and the metabolic syndrome (2001) Science, 294, pp. 2166-2170
  • Morton, N.M., Paterson, J.M., Masuzaki, H., Holmes, M.C., Staels, B., Fievet, C., Walker, B.R., Seckl, J.R., Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 beta-hydroxysteroid dehydrogenase type 1-deficient mice (2004) Diabetes, 53, pp. 931-938
  • Newell-Price, J., Bertagna, X., Grossman, A.B., Nieman, L.K., Cushing's syndrome (2006) Lancet, 367, pp. 1605-1617
  • Nickerson, J., Experimental observations of a nuclear matrix (2001) J. Cell Sci., 114, pp. 463-474
  • Nielsen, R., Pedersen, T.A., Hagenbeek, D., Moulos, P., Siersbæk, R., Megens, E., Denissov, S., Mandrup, S., Genomewide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis (2008) Genes Dev., 22, pp. 2953-2967
  • Nothwang, H.G., Guillemin, I., Schindler, J., Subcellular Fractionation of Small Sample Amounts (2009), pp. 165-170. , In The Protein Protocols Handbook (ed. J. M. Walker), pp Heidelberg: Springer; O'Leary, J.C., Dharia, S., Blair, L.J., Brady, S., Johnson, A.G., Peters, M., Cheung-Flynn, J., Weeber, E.J., A new anti-depressive strategy for the elderly: ablation of FKBP5/FKBP51 (2011) PLoS ONE, 6, pp. e24840
  • Pantoja, C., Huff, J.T., Yamamoto, K.R., Glucocorticoid signaling defines a novel commitment state during adipogenesis in vitro (2008) Mol. Biol. Cell, 19, pp. 4032-4041
  • Petersen, R.K., Madsen, L., Pedersen, L.M., Hallenborg, P., Hagland, H., Viste, K., Døskeland, S.O., Kristiansen, K., Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac-and cAMP-dependent protein kinase-dependent processes (2008) Mol. Cell. Biol., 28, pp. 3804-3816
  • Pirkl, F., Buchner, J., Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40 (2001) J. Mol. Biol., 308, pp. 795-806
  • Piwien Pilipuk, G., Galigniana, M.D., Schwartz, J., Subnuclear localization of C/EBP beta is regulated by growth hormone and dependent on MAPK (2003) J. Biol. Chem., 278, pp. 35668-35677
  • Pratt, W.B., Toft, D.O., Steroid receptor interactions with heat shock protein and immunophilin chaperones (1997) Endocr. Rev., 18, pp. 306-360
  • Rajala, M.W., Scherer, P.E., Minireview: the adipocyte - at the crossroads of energy homeostasis, inflammation, and atherosclerosis (2003) Endocrinology, 144, pp. 3765-3773
  • Reusch, J.E., Colton, L.A., Klemm, D.J., CREB activation induces adipogenesis in 3T3-L1 cells (2000) Mol. Cell. Biol., 20, pp. 1008-1020
  • Riggs, D.L., Roberts, P.J., Chirillo, S.C., Cheung-Flynn, J., Prapapanich, V., Ratajczak, T., Gaber, R., Smith, D.F., The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo (2003) EMBO J., 22, pp. 1158-1167
  • Rosen, E.D., MacDougald, O.A., Adipocyte differentiation from the inside out (2006) Nat. Rev. Mol. Cell Biol., 7, pp. 885-896
  • Siersbæk, R., Nielsen, R., John, S., Sung, M.H., Baek, S., Loft, A., Hager, G.L., Mandrup, S., Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis (2011) EMBO J., 30, pp. 1459-1472
  • Sivils, J.C., Storer, C.L., Galigniana, M.D., Cox, M.B., Regulation of steroid hormone receptor function by the 52-kDa FK506-binding protein (FKBP52) (2011) Curr. Opin. Pharmacol., 11, pp. 314-319
  • Steger, D.J., Grant, G.R., Schupp, M., Tomaru, T., Lefterova, M.I., Schug, J., Manduchi, E., Lazar, M.A., Propagation of adipogenic signals through an epigenomic transition state (2010) Genes Dev., 24, pp. 1035-1044
  • Steinberg, G.R., Inflammation in obesity is the common link between defects in fatty acid metabolism and insulin resistance (2007) Cell Cycle, 6, pp. 888-894
  • Storer, C.L., Dickey, C.A., Galigniana, M.D., Rein, T., Cox, M.B., FKBP51 and FKBP52 in signaling and disease (2011) Trends Endocrinol. Metab., 22, pp. 481-490
  • Stuurman, N., Identification of a conserved phosphorylation site modulating nuclear lamin polymerization (1997) FEBS Lett., 401, pp. 171-174
  • Susperreguy, S., Prendes, L.P., Desbats, M.A., Charó, N.L., Brown, K., MacDougald, O.A., Kerppola, T., Piwien-Pilipuk, G., Visualization by BiFC of different C/EBPb dimers and their interaction with HP1a reveals a differential subnuclear distribution of complexes in living cells (2011) Exp. Cell Res., 317, pp. 706-723
  • Sutherland, H., Bickmore, W.A., Transcription factories: gene expression in unions? Nat (2009) Rev. Genet., 10, pp. 457-466
  • Taskén, K., Aandahl, E.M., Localized effects of cAMP mediated by distinct routes of protein kinase A (2004) Physiol. Rev., 84, pp. 137-167
  • Taylor, S.S., Buechler, J.A., Yonemoto, W., cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes (1990) Annu. Rev. Biochem., 59, pp. 971-1005
  • Touma, C., Gassen, N.C., Herrmann, L., Cheung-Flynn, J., Büll, D.R., Ionescu, I.A., Heinzmann, J.M., Depping, A.M., FK506 binding protein 5 shapes stress responsiveness: modulation of neuroendocrine reactivity and coping behavior (2011) Biol. Psychiatry, 70, pp. 928-936
  • van Kruijsdijk, R.C., van der Wall, E., Visseren, F.L., Obesity and cancer: the role of dysfunctional adipose tissue (2009) Cancer Epidemiol. Biomarkers Prev., 18, pp. 2569-2578
  • Vassaux, G., Gaillard, D., Ailhaud, G., Négrel, R., Prostacyclin is a specific effector of adipose cell differentiation.Its dual role as a cAMP-and Ca(2+)-elevating agent (1992) J. Biol. Chem., 267, pp. 11092-11097
  • Verstraeten, V.L.R.M., Broers, J.L., Ramaekers, F.C., van Steensel, M.A., The nuclear envelope, a key structure in cellular integrity and gene expression (2007) Curr. Med. Chem., 14, pp. 1231-1248
  • Verstraeten, V.L.R.M., Renes, J., Ramaekers, F.C., Kamps, M., Kuijpers, H.J., Verheyen, F., Wabitsch, M., Broers, J.L., Reorganization of the nuclear lamina and cytoskeleton in adipogenesis (2011) Histochem. Cell Biol., 135, pp. 251-261
  • Wajchenberg, B.L., Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome (2000) Endocr. Rev., 21, pp. 697-738
  • Warrier, M., Hinds, T.D., Ledford, K.J., Cash, H.A., Patel, P.R., Bowman, T.A., Stechschulte, L.A., Najjar, S.M., Susceptibility to diet-induced hepatic steatosis and glucocorticoid resistance in FK506-binding protein 52-deficient mice (2010) Endocrinology, 151, pp. 3225-3236
  • Wochnik, G.M., Rüegg, J., Abel, G.A., Schmidt, U., Holsboer, F., Rein, T., FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells (2005) J. Biol. Chem., 280, pp. 4609-4616
  • Xiao, H., Leblanc, S.E., Wu, Q., Konda, S., Salma, N., Marfella, C.G., Ohkawa, Y., Imbalzano, A.N., Chromatin accessibility and transcription factor binding at the PPARc2 promoter during adipogenesis is protein kinase A-dependent (2011) J. Cell. Physiol., 226, pp. 86-93
  • Yong, W., Yang, Z., Periyasamy, S., Chen, H., Yucel, S., Li, W., Lin, L.Y., Baskin, L.S., Essential role for Co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology (2007) J. Biol. Chem., 282, pp. 5026-5036


---------- APA ----------
Toneatto, J., Guber, S., Charó, N.L., Susperreguy, S., Schwartz, J., Galigniana, M.D. & Piwien-Pilipuk, G. (2013) . Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation. Journal of Cell Science, 126(23), 5357-5368.
---------- CHICAGO ----------
Toneatto, J., Guber, S., Charó, N.L., Susperreguy, S., Schwartz, J., Galigniana, M.D., et al. "Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation" . Journal of Cell Science 126, no. 23 (2013) : 5357-5368.
---------- MLA ----------
Toneatto, J., Guber, S., Charó, N.L., Susperreguy, S., Schwartz, J., Galigniana, M.D., et al. "Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation" . Journal of Cell Science, vol. 126, no. 23, 2013, pp. 5357-5368.
---------- VANCOUVER ----------
Toneatto, J., Guber, S., Charó, N.L., Susperreguy, S., Schwartz, J., Galigniana, M.D., et al. Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation. J. Cell Sci. 2013;126(23):5357-5368.