Artículo

Sampayo, R.G.; Toscani, A.M.; Rubashkin, M.G.; Thi, K.; Masullo, L.A.; Violi, I.L.; Lakins, J.N.; Cáceres, A.; Hines, W.C.; Leskow, F.C.; Stefani, F.D.; Chialvo, D.R.; Bissell, M.J.; Weaver, V.M.; Simian, M. "Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells" (2018) Journal of Cell Biology. 217(8):2777-2798
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general. Using biochemical approaches and superresolution microscopy, we show that estrogen drives membrane ERα into endosomes in breast cancer cells and that its fate is determined by the presence of fibronectin (FN) in the extracellular matrix; it is trafficked to lysosomes in the absence of FN and avoids the lysosomal compartment in its presence. In this context, FN prolongs ERα half-life and strengthens its transcriptional activity. We show that ERα is associated with β1-integrin at the membrane, and this integrin follows the same endocytosis and subcellular trafficking pathway triggered by estrogen. Moreover, ERα+ vesicles are present within human breast tissues, and colocalization with β1-integrin is detected primarily in tumors. Our work unravels a key, clinically relevant mechanism of microenvironmental regulation of ERα signaling. © 2018 Sampayo et al.

Registro:

Documento: Artículo
Título:Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells
Autor:Sampayo, R.G.; Toscani, A.M.; Rubashkin, M.G.; Thi, K.; Masullo, L.A.; Violi, I.L.; Lakins, J.N.; Cáceres, A.; Hines, W.C.; Leskow, F.C.; Stefani, F.D.; Chialvo, D.R.; Bissell, M.J.; Weaver, V.M.; Simian, M.
Filiación:Universidad de Buenos Aires, Instituto de Oncología “Ángel H. Roffo”, Área Investigación, Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Ciudad Universitaria, Buenos Aires, Argentina
Universidad Nacional de San Martín, Instituto de Nanosistemas, Campus Miguelete, San Martín, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, IQUIBICEN UBA-CONICET y Universidad Nacional de Luján, Departamento de Ciencias Básicas, Buenos Aires, Argentina
Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
Centro de Investigaciones en Bionanociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Investigación Médica Mercedes y Martín Ferreyra, Córdoba, Argentina
Center for Complex Systems and Brain Sciences, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Tecnológicas, San Martín, Argentina
Palabras clave:beta1 integrin; estrogen; estrogen receptor alpha; fibronectin; Article; biochemical analysis; breast cancer; breast tissue; cancer cell; cell compartmentalization; cell fate; cell vacuole; controlled study; endocytosis; endosome; estrogen activity; extracellular matrix; human; human cell; human tissue; intracellular transport; lysosome; microscopy; priority journal; protein degradation; protein function; protein localization; protein protein interaction; signal transduction
Año:2018
Volumen:217
Número:8
Página de inicio:2777
Página de fin:2798
DOI: http://dx.doi.org/10.1083/jcb.201703037
Título revista:Journal of Cell Biology
Título revista abreviado:J. Cell Biol.
ISSN:00219525
CODEN:JCLBA
CAS:fibronectin, 86088-83-7
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219525_v217_n8_p2777_Sampayo

Referencias:

  • Acconcia, F., Ascenzi, P., Bocedi, A., Spisni, E., Tomasi, V., Trentalance, A., Visca, P., Marino, M., Palmitoylation-dependent estrogen receptor alpha membrane localization: Regulation by 17beta-estradiol (2005) Mol. Biol. Cell., 16, pp. 231-237. , https://doi.org/10.1091/mbc.e04-07-0547
  • Acconcia, F., Manavathi, B., Mascarenhas, J., Talukder, A.H., Mills, G., Kumar, R., An inherent role of integrin-linked kinase-estrogen receptoralphainteractionincellmigration (2006) CancerRes, 66, pp. 11030-11038. , https://doi.org/10.1158/0008-5472.CAN-06-2676
  • Acerbi, I., Cassereau, L., Dean, I., Shi, Q., Au, A., Park, C., Chen, Y.Y., Weaver, V.M., Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration (2015) Integr. Biol., 7, pp. 1120-1134. , https://doi.org/10.1039/C5IB00040H
  • Adlanmerini, M., Solinhac, R., Abot, A., Fabre, A., Raymond-Letron, I., Gui-Hot, A.L., Boudou, F., Kim, S.H., Mutation of the palmitoylation site of estrogen receptor α in vivo reveals tissue-specific roles for membrane versus nuclear actions (2014) Proc. Natl. Acad. Sci. USA., 111, pp. E283-E290. , https://doi.org/10.1073/pnas.1322057111
  • Ambrose, E.J., A surface contact microscope for the study of cell movements (1956) Nature, 178, p. 1194. , https://doi.org/10.1038/1781194a0
  • Arjonen, A., Alanko, J., Veltel, S., Ivaska, J., Distinct recycling of active and inactive β1 integrins (2012) Traffic, 13, pp. 610-625. , https://doi.org/10.1111/j.1600-0854.2012.01327.x
  • Arnal, J.F., Lenfant, F., Metivier, R., Flouriot, G., Henrion, D., Adlanmerini, M., Fontaine, C., Katzenellenbogen, J., Membrane and nuclear estrogen receptor alpha actions: From tissue specificity to medical implications (2017) Physiol. Rev., 97, pp. 1045-1087. , https://doi.org/10.1152/physrev.00024.2016
  • Axelrod, D., Cell-substrate contacts illuminated by total internal reflection fluorescence (1981) J. Cell Biol., 89, pp. 141-145. , https://doi.org/10.1083/jcb.89.1.141
  • Axelrod, D., Total internal reflection fluorescence microscopy in cell biology (2001) Traffic, 2, pp. 764-774. , https://doi.org/10.1034/j.1600-0854.2001.21104.x
  • Bacia, K., Schwille, P., Kurzchalia, T., Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes (2005) Proc. Natl. Acad. Sci. USA., 102, pp. 3272-3277. , https://doi.org/10.1073/pnas.0408215102
  • Bae, Y.K., Kim, A., Kim, M.K., Choi, J.E., Kang, S.H., Lee, S.J., Fibronectin expression in carcinoma cells correlates with tumor aggressiveness and poor clinical outcome in patients with invasive breast cancer (2013) Hum. Pathol., 44, pp. 2028-2037. , https://doi.org/10.1016/j.humpath.2013.03.006
  • Barabas, F.M., Masullo, L.A., Stefani, F.D., Tormenta: An open source Python-powered control software for camera based optical microscopy (2016) Rev. Sci. Instrum., 87, p. 126103. , https://doi.org/10.1063/1.4972392
  • Bates, M., Huang, B., Dempsey, G.T., Zhuang, X., Multicolor super-resolution imaging with photo-switchable fluorescent probes (2007) Science, 317, pp. 1749-1753. , https://doi.org/10.1126/science.1146598
  • Bermudez-Hernandez, K., Keegan, S., Whelan, D.R., Reid, D.A., Zagelbaum, J., Yin, Y., Ma, S., Fenyö, D., A method for quantifying molecular interactions using stochastic modelling and super-resolution microscopy (2017) Sci. Rep., 7, p. 14882. , https://doi.org/10.1038/s41598-017-14922-8
  • Bonifacino, J.S., Dell'Angelica, E.C., Springer, T.A., Immunoprecipi-tation (2001) Curr. Protoc. Immunol., , Chapter 8:Unit
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254. , https://doi.org/10.1016/0003-2697(76)90527-3
  • Comprehensive molecular portraits of human breast tumours (2012) Nature, 490, pp. 61-70. , https://doi.org/10.1038/nature11412, Cancer Genome Atlas Network
  • Caswell, P.T., Vadrevu, S., Norman, J.C., Integrins: Masters and slaves of endocytic transport (2009) Nat. Rev. Mol. Cell Biol., 10, pp. 843-853. , https://doi.org/10.1038/nrm2799
  • Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Larsson, E., The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data (2012) Cancer Discov, 2, pp. 401-404. , https://doi.org/10.1158/2159-8290.CD-12-0095
  • Chaumet, A., Wright, G.D., Seet, S.H., Tham, K.M., Gounko, N.V., Bard, F., Nuclear envelope-associated endosomes deliver surface proteins to the nucleus (2015) Nat. Commun., 6, p. 8218. , https://doi.org/10.1038/ncomms9218
  • Chung, T.H., Wang, S.M., Liang, J.Y., Yang, S.H., Wu, J.C., The interaction of estrogen receptor alpha and caveolin-3 regulates connexin43 phosphorylation in metabolic inhibition-treated rat cardiomyocytes (2009) Int. J. Biochem. Cell Biol., 41, pp. 2323-2333. , https://doi.org/10.1016/j.biocel.2009.06.001
  • Ciriello, G., Cerami, E., Sander, C., Schultz, N., Mutual exclusivity analysisidentifiesoncogenicnetworkmodules (2012) GenomeRes, 22, pp. 398-406. , https://doi.org/10.1101/gr.125567.111
  • Ciriello, G., Gatza, M.L., Beck, A.H., Wilkerson, M.D., Rhie, S.K., Pastore, A., Zhang, H., Kandoth, C., Comprehensive molecular portraits of invasive lobular breast cancer (2015) Cell, 163, pp. 506-519. , https://doi.org/10.1016/j.cell.2015.09.033, TCGA Research Network
  • Correia, A.L., Bissell, M.J., The tumor microenvironment is a dominant force in multidrug resistance (2012) Drug Resist. Updat., 15, pp. 39-49. , https://doi.org/10.1016/j.drup.2012.01.006
  • Cosker, K.E., Segal, R.A., Neuronal signaling through endocytosis (2014) Cold Spring Harb. Perspect. Biol., 6, p. a020669. , https://doi.org/10.1101/cshperspect.a020669
  • Cosker, K.E., Courchesne, S.L., Segal, R.A., Action in the axon: Generation and transport of signaling endosomes (2008) Curr. Opin. Neurobiol., 18, pp. 270-275. , https://doi.org/10.1016/j.conb.2008.08.005
  • Couse, J.F., Lindzey, J., Grandien, K., Gustafsson, J.A., Korach, K.S., Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse (1997) Endocrinology, 138, pp. 4613-4621. , https://doi.org/10.1210/endo.138.11.5496
  • Cox, D., Lee, D.J., Dale, B.M., Calafat, J., Greenberg, S., A Rab11-con-taining rapidly recycling compartment in macrophages that promotes phagocytosis (2000) Proc. Natl. Acad. Sci. USA., 97, pp. 680-685. , https://doi.org/10.1073/pnas.97.2.680
  • Debnath, J., Muthuswamy, S.K., Brugge, J.S., Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures (2003) Methods, 30, pp. 256-268. , https://doi.org/10.1016/S1046-2023(03)00032-X
  • De Franceschi, N., Hamidi, H., Alanko, J., Sahgal, P., Ivaska, J., Integrin traffic: The update (2015) J. Cell Sci., 128, pp. 839-852. , https://doi.org/10.1242/jcs.161653
  • Degasperi, A., Birtwistle, M.R., Volinsky, N., Rauch, J., Kolch, W., Kholodenko, B.N., Evaluating strategies to normalise biological replicates of Western blot data (2014) PLoS One, 9. , https://doi.org/10.1371/journal.pone.0087293
  • Delcroix, J.D., Valletta, J.S., Wu, C., Hunt, S.J., Kowal, A.S., Mobley, C., NGFsignalinginsensoryneurons:Evidencethatearlyendosomescarry NGF retrograde signals (2003) Neuron, 39, pp. 69-84. , https://doi.org/10.1016/S0896-6273(03)00397-0
  • Dozynkiewicz, M.A., Jamieson, N.B., Macpherson, I., Grindlay, J., Van Den Berghe, P.V., Von Thun, A., Morton, J.P., Nixon, C., Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression (2012) Dev. Cell., 22, pp. 131-145. , https://doi.org/10.1016/j.devcel.2011.11.008
  • Dunn, K.W., Kamocka, M.M., McDonald, J.H., A practical guide to evaluating colocalization in biological microscopy (2011) Am. J. Physiol. Cell Physiol., 300, pp. C723-C742. , https://doi.org/10.1152/ajpcell.00462.2010
  • Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., Gelmon, K., Wan, A., Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution (2015) Nature, 518, pp. 422-426. , https://doi.org/10.1038/nature13952
  • Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Larsson, E., Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal (2013) Sci. Signal., 6, p. pl1. , https://doi.org/10.1126/scisignal.2004088
  • Gao, W.W., Xiao, R.Q., Peng, B.L., Xu, H.T., Shen, H.F., Huang, M.F., Shi, T.T., Wu, X.N., Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation (2015) Proc. Natl. Acad. Sci. USA., 112, pp. E3327-E3336. , https://doi.org/10.1073/pnas.1509658112
  • Ghajar, C.M., Bissell, M.J., Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: Insights from imaging (2008) Histochem. Cell Biol., 130, pp. 1105-1118. , https://doi.org/10.1007/s00418-008-0537-1
  • Gillespie, E.J., Ho, C.L., Balaji, K., Clemens, D.L., Deng, G., Wang, Y.E., Elsaesser, H.J., Dixon, S.D., Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses (2013) Proc. Natl. Acad. Sci. USA., 110, pp. E4904-E4912. , https://doi.org/10.1073/pnas.1302334110
  • Gould, G.W., Lippincott-Schwartz, J., New roles for endosomes: From vesicular carriers to multi-purpose platforms (2009) Nat. Rev. Mol. Cell Biol., 10, pp. 287-292. , https://doi.org/10.1038/nrm2652
  • Graham, J.D., Mote, P.A., Salagame, U., Balleine, R.L., Huschtscha, L.I., Clarke, C.L., Hormone-responsive model of primary human breast epithelium (2009) J. Mammary Gland Biol. Neoplasia., 14, pp. 367-379. , https://doi.org/10.1007/s10911-009-9160-6
  • Grant, B.D., Donaldson, J.G., Pathways and mechanisms of endocytic recycling (2009) Nat. Rev. Mol. Cell Biol., 10, pp. 597-608. , https://doi.org/10.1038/nrm2755
  • Han, S.W., Roman, J., Fibronectin induces cell proliferation and inhibits apoptosis in human bronchial epithelial cells: Pro-oncogenic effectsmediatedbyPI3-kinaseandNF-kappaB (2006) Oncogene, 25, pp. 4341-4349. , https://doi.org/10.1038/sj.onc.1209460
  • Han, X., Aenlle, K.K., Bean, L.A., Rani, A., Semple-Rowland, S.L., Kumar, A., Foster, T.C., Role of estrogen receptor α and β in preserving hippo-campal function during aging (2013) J. Neurosci., 33, pp. 2671-2683. , https://doi.org/10.1523/JNEUROSCI.4937-12.2013
  • Hartley, R.I., Zisserman, A., (2004) Multiple View Geometry in Computer Vision, , Chapter 4. Cambridge University Press, Cambridge, UK
  • He, Y., Ren, Y., Wu, B., Decourt, B., Lee, A.C., Taylor, A., Suter, D.M., Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones (2015) Mol. Biol. Cell., 26, pp. 3229-3244. , https://doi.org/10.1091/mbc.e15-03-0142
  • Heery, D.M., Kalkhoven, E., Hoare, S., Parker, M.G., A signature motif in transcriptional co-activators mediates binding to nuclear receptors (1997) Nature, 387, pp. 733-736. , https://doi.org/10.1038/42750
  • Helleman, J., Jansen, M.P., Ruigrok-Ritstier, K., Van Staveren, I.L., Look, M.P., Meijer-Van Gelder, M.E., Sieuwerts, A.M., Berns, E.M., Association of an extracellular matrix gene cluster with breast cancer prognosis and endocrine therapy response (2008) Clin. Cancer Res., 14, pp. 5555-5564. , https://doi.org/10.1158/1078-0432.CCR-08-0555
  • Hernández, M.V., Sala, M.G., Balsamo, J., Lilien, J., Arregui, C.O., ER-bound PTP1B is targeted to newly forming cell-matrix adhesions (2006) J. Cell Sci., 119, pp. 1233-1243. , https://doi.org/10.1242/jcs.02846
  • Hines, W.C., Kuhn, I., Thi, K., Chu, B., Stanford-Moore, G., Sampayo, R., Garbe, J.C., Bissell, M.J., 184AA3: A xenograft model of ER+ breast adenocarcinoma (2016) Breast Cancer Res. Treat., 155, pp. 37-52. , https://doi.org/10.1007/s10549-015-3649-z
  • Honerkamp-Smith, A.R., Veatch, S.L., Keller, S.L., An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes (2009) Biochim. Biophys. Acta., 1788, pp. 53-63. , https://doi.org/10.1016/j.bbamem.2008.09.010
  • Jeselsohn, R., De Angelis, C., Brown, M., Schiff, R., The evolving role of the estrogen receptor mutations in endocrine therapy-resistant breast cancer (2017) Curr. Oncol. Rep., 19, p. 35. , https://doi.org/10.1007/s11912-017-0591-8
  • Johnson, J.L., He, J., Ramadass, M., Pestonjamasp, K., Kiosses, W.B., Zhang, J., Catz, S.D., Munc13-4 is a Rab11-binding protein that regulates Rab11-positive vesicle trafficking and docking at the plasma membrane (2016) J. Biol. Chem., 291, pp. 3423-3438. , https://doi.org/10.1074/jbc.M115.705871
  • Kisler, K., Chow, R.H., Dominguez, R., Fluorescently-labeled estradiol internalization and membrane trafficking in live N-38 neuronal cells visualized with total internal reflection fluorescence microscopy (2013) J. Steroids Horm. Sci., , https://doi.org/10.4172/2157-7536.S12-002
  • La Rosa, P., Pesiri, V., Leclercq, G., Marino, M., Acconcia, F., Palmitoy-lation regulates 17β-estradiol-induced estrogen receptor-α degradation and transcriptional activity (2012) Mol. Endocrinol., 26, pp. 762-774. , https://doi.org/10.1210/me.2011-1208
  • Letoha, T., Gaál, S., Somlai, C., Czajlik, A., Perczel, A., Penke, B., Membrane translocation of penetratin and its derivatives in different cell lines (2003) J. Mol. Recognit., 16, pp. 272-279. , https://doi.org/10.1002/jmr.637
  • Levin, E.R., Plasma membrane estrogen receptors (2009) Trends Endocrinol. Metab., 20, pp. 477-482. , https://doi.org/10.1016/j.tem.2009.06.009
  • Li, X., Garrity, A.G., Xu, H., Regulation of membrane trafficking by signalling on endosomal and lysosomal membranes (2013) J. Physiol., 591, pp. 4389-4401. , https://doi.org/10.1113/jphysiol.2013.258301
  • Long, K., Moss, L., Laursen, L., Boulter, L., Ffrench-Constant, C., Integrin signalling regulates the expansion of neuroepithelial progenitors and neurogenesis via Wnt7a and Decorin (2016) Nat. Commun., 7, p. 10354. , https://doi.org/10.1038/ncomms10354
  • Lu, P., Takai, K., Weaver, V.M., Werb, Z., Extracellular matrix degradation and remodeling in development and disease (2011) Cold Spring Harb. Perspect. Biol., 3, p. a005058. , https://doi.org/10.1101/cshperspect.a005058
  • Lu, P., Weaver, V.M., Werb, Z., The extracellular matrix: A dynamic niche in cancer progression (2012) J. Cell Biol., 196, pp. 395-406. , https://doi.org/10.1083/jcb.201102147
  • Luzio, J.P., Pryor, P.R., Bright, N.A., Lysosomes: Fusion and function (2007) Nat. Rev. Mol. Cell Biol., 8, pp. 622-632. , https://doi.org/10.1038/nrm2217
  • Mak, H.Y., Hoare, S., Henttu, P.M., Parker, M.G., Molecular determinants of the estrogen receptor-coactivator interface (1999) Mol. Cell. Biol., 19, pp. 3895-3903. , https://doi.org/10.1128/MCB.19.5.3895
  • Małecki, J., Wesche, J., Skjerpen, C.S., Wiedłocha, A., Olsnes, S., Trans-location of FGF-1 and FGF-2 across vesicular membranes occurs during G1-phase by a common mechanism (2004) Mol. Biol. Cell., 15, pp. 801-814. , https://doi.org/10.1091/mbc.e03-08-0589
  • Marino, M., Ascenzi, P., Acconcia, F., S-palmitoylation modulates estrogen receptor alpha localization and functions (2006) Steroids, 71, pp. 298-303. , https://doi.org/10.1016/j.steroids.2005.09.011
  • Mayor, S., Pagano, R.E., Pathways of clathrin-independent endocytosis (2007) Nat. Rev. Mol. CellBiol., 8, pp. 603-612. , https://doi.org/10.1038/nrm2216
  • Mayor, S., Rothberg, K.G., Maxfield, F.R., Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking (1994) Science, 264, pp. 1948-1951. , https://doi.org/10.1126/science.7516582
  • McDonough, A.A., Veiras, L.C., Minas, J.N., Ralph, D.L., Considerations when quantitating protein abundance by immunoblot (2015) Am. J. Physiol. Cell Physiol., 308, pp. C426-C433. , https://doi.org/10.1152/ajpcell.00400.2014
  • Moreno-Layseca, P., Streuli, C.H., Signalling pathways linking integrins with cell cycle progression (2014) Matrix Biol, 34, pp. 144-153. , https://doi.org/10.1016/j.matbio.2013.10.011
  • Nam, J.M., Onodera, Y., Bissell, M.J., Park, C.C., Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin alpha5beta1 and fibronectin (2010) Cancer Res, 70, pp. 5238-5248. , https://doi.org/10.1158/0008-5472.CAN-09-2319
  • Nardone, A., De Angelis, C., Trivedi, M.V., Osborne, C.K., Schiff, R., The changing role of ER in endocrine resistance (2015) Breast, 24, pp. S60-S66. , https://doi.org/10.1016/j.breast.2015.07.015
  • Nicovich, P.R., Owen, D.M., Gaus, K., Turning single-molecule localization microscopy into a quantitative bioanalytical tool (2017) Nat. Protoc., 12, pp. 453-460. , https://doi.org/10.1038/nprot.2016.166
  • Ovesný, M., Křížek, P., Borkovec, J., Svindrych, Z., Hagen, G.M., ThunderSTORM: A comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging (2014) Bioinformatics, 30, pp. 2389-2390. , https://doi.org/10.1093/bioinformatics/btu202
  • Pedram, A., Razandi, M., Aitkenhead, M., Hughes, C.C., Levin, E.R., Integration of the non-genomic and genomic actions of estrogen. Membrane-initiated signaling by steroid to transcription and cell biology (2002) J. Biol. Chem., 277, pp. 50768-50775. , https://doi.org/10.1074/jbc.M210106200
  • Pereira, B., Chin, S.F., Rueda, O.M., Vollan, H.K., Provenzano, E., Bardwell, H.A., Pugh, M., Sammut, S.J., The somatic mutation profiles of 2,433 breast cancers refines their genomic and tran-scriptomic landscapes (2016) Nat. Commun., 7, p. 11479. , https://doi.org/10.1038/ncomms11479
  • Pietras, R.J., Szego, C.M., Specific internalization of estrogen and binding to nuclear matrix in isolated uterine cells (1984) Biochem. Biophys. Res. Commun., 123, pp. 84-91. , https://doi.org/10.1016/0006-291X(84)90383-8
  • Pontiggia, O., Sampayo, R., Raffo, D., Motter, A., Xu, R., Bissell, M.J., Joffé, E.B., Simian, M., The tumor microenvironment modulates tamoxifen resistance in breast cancer: A role for soluble stromal factors and fibronectin through β1 integrin (2012) Breast Cancer Res. Treat., 133, pp. 459-471. , https://doi.org/10.1007/s10549-011-1766-x
  • Razandi, M., Oh, P., Pedram, A., Schnitzer, J., Levin, E.R., ERs associate with and regulate the production of caveolin: Implications for signaling and cellular actions (2002) Mol. Endocrinol., 16, pp. 100-115. , https://doi.org/10.1210/mend.16.1.0757
  • Reid, G., Hübner, M.R., Métivier, R., Brand, H., Denger, S., Manu, D., Beaud-Ouin, J., Gannon, F., Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling (2003) Mol. Cell., 11, pp. 695-707. , https://doi.org/10.1016/S1097-2765(03)00090-X
  • Rust, M.J., Bates, M., Zhuang, X., Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) (2006) Nat. Methods., 3, pp. 793-795. , https://doi.org/10.1038/nmeth929
  • Savkur, R.S., Burris, T.P., The coactivator LXXLL nuclear receptor recognition motif (2004) J. Pept. Res., 63, pp. 207-212. , https://doi.org/10.1111/j.1399-3011.2004.00126.x
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Schmid, B., Fiji: An open-source platform for biological-image analysis (2012) Nat. Methods., 9, pp. 676-682. , https://doi.org/10.1038/nmeth.2019
  • Schlegel, A., Wang, C., Katzenellenbogen, B.S., Pestell, R.G., Lisanti, M.P., Caveolin-1 potentiates estrogen receptor alpha (ERalpha) signaling (1999) J. Biol. Chem., 274, pp. 33551-33556. , https://doi.org/10.1074/jbc.274.47.33551
  • Skliris, G.P., Rowan, B.G., Al-Dhaheri, M., Williams, C., Troup, S., Begic, S., Parisien, M., Murphy, L.C., Immunohistochemical validation of multiple phospho-specific epitopes for estrogen receptor alpha (ERalpha) in tissue microarrays of ERalpha positive human breastcarcinomas (2009) BreastCancerRes.Treat., 118, pp. 443-453. , https://doi.org/10.1007/s10549-008-0267-z
  • Solowska, J., Edelman, J.M., Albelda, S.M., Buck, C.A., Cytoplasmic and transmembrane domains of integrin β 1 and β 3 subunits are functionally interchangeable (1991) J. Cell Biol., 114, pp. 1079-1088. , https://doi.org/10.1083/jcb.114.5.1079
  • Su, Q.P., Du, W., Ji, Q., Xue, B., Jiang, D., Zhu, Y., Lou, J., Sun, Y., Vesicle size regulates nanotube formation in the cell (2016) Sci. Rep., 6, p. 24002. , https://doi.org/10.1038/srep24002
  • Sung, B.H., Weaver, A.M., Regulation of lysosomal secretion by cortactin drives fibronectin deposition and cell motility (2011) Bioarchitecture, 1, pp. 257-260. , https://doi.org/10.4161/bioa.1.6.19197
  • Takahashi, S., Kubo, K., Waguri, S., Yabashi, A., Shin, H.W., Katoh, Y., Nakayama, K., Rab11 regulates exocytosis of recycling vesicles at the plasma membrane (2012) J. Cell Sci., 125, pp. 4049-4057. , https://doi.org/10.1242/jcs.102913
  • Tiwari, A., Jung, J.J., Inamdar, S.M., Brown, C.O., Goel, A., Choudhury, A., Endothelial cell migration on fibronectin is regulated by syntaxin 6-mediated alpha5beta1 integrin recycling (2011) J. Biol. Chem., 286, pp. 36749-36761. , https://doi.org/10.1074/jbc.M111.260828
  • Totta, P., Pesiri, V., Marino, M., Acconcia, F., Lysosomal function is involved in 17β-estradiol-induced estrogen receptor α degradation and cell proliferation (2014) PLoS One, 9. , https://doi.org/10.1371/journal.pone.0094880
  • Totta, P., Pesiri, V., Enari, M., Marino, M., Acconcia, F., Clathrin heavy chain interacts with estrogen receptor α and modulates 17β-estradiol signaling (2015) Mol. Endocrinol., 29, pp. 739-755. , https://doi.org/10.1210/me.2014-1385
  • Upla, P., Marjomäki, V., Kankaanpää, P., Ivaska, J., Hyypiä, T., Van Der Goot, F.G., Heino, J., Clustering induces a lateral redistribution of alpha 2 beta 1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization (2004) Mol. Biol. Cell., 15, pp. 625-636. , https://doi.org/10.1091/mbc.e03-08-0588
  • Van De Linde, S., Löschberger, A., Klein, T., Heidbreder, M., Wolter, S., Hei-Lemann, M., Sauer, M., Direct stochastic optical reconstruction microscopy with standard fluorescent probes (2011) Nat. Protoc., 6, pp. 991-1009. , https://doi.org/10.1038/nprot.2011.336
  • Vanlandingham, P.A., Ceresa, B.P., Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration (2009) J. Biol. Chem., 284, pp. 12110-12124. , https://doi.org/10.1074/jbc.M809277200
  • Wang, X., Robbins, J., Proteasomal and lysosomal protein degradation and heart disease (2014) J. Mol. Cell. Cardiol., 71, pp. 16-24. , https://doi.org/10.1016/j.yjmcc.2013.11.006
  • Waxmonsky, N.C., Conner, S.D., Αvβ3-integrin-mediated adhesion is regulated through an AAK1L- And EHD3-dependent rapid-recycling pathway (2013) J. Cell Sci., 126, pp. 3593-3601. , https://doi.org/10.1242/jcs.122465
  • Yao, E.S., Zhang, H., Chen, Y.Y., Lee, B., Chew, K., Moore, D., Park, C., Increased beta1 integrin is associated with decreased survival in invasive breast cancer (2007) Cancer Res, 67, pp. 659-664. , https://doi.org/10.1158/0008-5472.CAN-06-2768

Citas:

---------- APA ----------
Sampayo, R.G., Toscani, A.M., Rubashkin, M.G., Thi, K., Masullo, L.A., Violi, I.L., Lakins, J.N.,..., Simian, M. (2018) . Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells. Journal of Cell Biology, 217(8), 2777-2798.
http://dx.doi.org/10.1083/jcb.201703037
---------- CHICAGO ----------
Sampayo, R.G., Toscani, A.M., Rubashkin, M.G., Thi, K., Masullo, L.A., Violi, I.L., et al. "Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells" . Journal of Cell Biology 217, no. 8 (2018) : 2777-2798.
http://dx.doi.org/10.1083/jcb.201703037
---------- MLA ----------
Sampayo, R.G., Toscani, A.M., Rubashkin, M.G., Thi, K., Masullo, L.A., Violi, I.L., et al. "Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells" . Journal of Cell Biology, vol. 217, no. 8, 2018, pp. 2777-2798.
http://dx.doi.org/10.1083/jcb.201703037
---------- VANCOUVER ----------
Sampayo, R.G., Toscani, A.M., Rubashkin, M.G., Thi, K., Masullo, L.A., Violi, I.L., et al. Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells. J. Cell Biol. 2018;217(8):2777-2798.
http://dx.doi.org/10.1083/jcb.201703037