Artículo

Inda, C.; Claro, P.A.S.; Bonfiglio, J.J.; Senin, S.A.; Maccarrone, G.; Turck, C.W.; Silberstein, S. "Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling" (2016) Journal of Cell Biology. 214(2):181-195
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Corticotropin-releasing hormone receptor 1 (CRHR1) activates G protein-dependent and internalization-dependent signaling mechanisms. Here, we report that the cyclic AMP (cAMP) response of CRHR1 in physiologically relevant scenarios engages separate cAMP sources, involving the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). cAMP produced by tmACs and sAC is required for the acute phase of extracellular signal regulated kinase 1/2 activation triggered by CRH-stimulated CRHR1, but only sAC activity is essential for the sustained internalization-dependent phase. Thus, different cAMP sources are involved in different signaling mechanisms. Examination of the cAMP response revealed that CRH-activated CRHR1 generates cAMP after endocytosis. Characterizing CRHR1 signaling uncovered a specific link between CRH-activated CRHR1, sAC, and endosome-based signaling. We provide evidence of sAC being involved in an endocytosis-dependent cAMP response, strengthening the emerging model of GPCR signaling in which the cAMP response does not occur exclusively at the plasma membrane and introducing the notion of sAC as an alternative source of cAMP. © 2016 Inda et al.

Registro:

Documento: Artículo
Título:Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling
Autor:Inda, C.; Claro, P.A.S.; Bonfiglio, J.J.; Senin, S.A.; Maccarrone, G.; Turck, C.W.; Silberstein, S.
Filiación:Instituto de Investigación en Biomedicina de Buenos Aires-CON ICET, Partner Institute of the Max Planck Society, Buenos Aires, C1425FQD, Argentina
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, 80804, Germany
Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
Palabras clave:adenylate cyclase; corticotropin releasing factor receptor 1; cyclic AMP; G protein coupled receptor; mitogen activated protein kinase 3; adenylate cyclase; bicarbonate; calcium; corticotropin releasing factor; corticotropin releasing factor receptor; corticotropin releasing factor receptor 1; cyclic AMP; cyclic AMP dependent protein kinase; guanine nucleotide exchange factor; animal cell; Article; cell interaction; controlled study; endocytosis; enzyme activation; enzyme activity; nonhuman; priority journal; protein expression; signal transduction; 3T3-L1 cell line; ACTH secreting cell; animal; cell membrane; drug effects; enzymology; human; metabolism; mouse; rat; solubility; 3T3-L1 Cells; Adenylyl Cyclases; Animals; Bicarbonates; Calcium; Cell Membrane; Corticotrophs; Corticotropin-Releasing Hormone; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Endocytosis; Guanine Nucleotide Exchange Factors; Humans; Mice; Rats; Receptors, Corticotropin-Releasing Hormone; Signal Transduction; Solubility
Año:2016
Volumen:214
Número:2
Página de inicio:181
Página de fin:195
DOI: http://dx.doi.org/10.1083/jcb.201512075
Título revista:Journal of Cell Biology
Título revista abreviado:J. Cell Biol.
ISSN:00219525
CODEN:JCLBA
CAS:adenylate cyclase, 9012-42-4; cyclic AMP, 60-92-4; mitogen activated protein kinase 3, 137632-07-6; bicarbonate, 144-55-8, 71-52-3; calcium, 7440-70-2, 14092-94-5; corticotropin releasing factor, 9015-71-8, 178359-01-8, 79804-71-0, 86297-72-5, 86784-80-7; cyclic AMP dependent protein kinase; Adenylyl Cyclases; Bicarbonates; Calcium; Corticotropin-Releasing Hormone; CRF receptor type 1; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Guanine Nucleotide Exchange Factors; Receptors, Corticotropin-Releasing Hormone
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219525_v214_n2_p181_Inda

Referencias:

  • Allen, M.D., Zhang, J., Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters (2006) Biochem. Biophys. Res. Commun, 348, pp. 716-721. , http://dx.doi.org/10.1016/j.bbrc.2006.07.136
  • Appukuttan, A., Flacke, J.P., Flacke, H., Posadowsky, A., Reusch, H.P., Ladilov, Y., Inhibition of soluble adenylyl cyclase increases the radiosensitivity of prostate cancer cells (2014) Biochim. Biophys. Acta, 1842 (12), pp. 2656-2663. , http://dx.doi.org/10.1016/j.bbadis.2014.09.008, 12
  • Bitterman, J.L., Ramos-Espiritu, L., Diaz, A., Levin, L.R., Buck, J., Pharmacological distinction between soluble and transmembrane adenylyl cyclases (2013) J. Pharmacol. Exp. Ther, 347, pp. 589-598. , http://dx.doi.org/10.1124/jpet.113.208496
  • Bonfiglio, J.J., Inda, C., Refojo, D., Holsboer, F., Arzt, E., Silberstein, S., The corticotropin-releasing hormone network and the hypothalamicpituitary-adrenal axis: Molecular and cellular mechanisms involved (2011) Neuroendocrinology, 94, pp. 12-20. , http://dx.doi.org/10.1159/000328226
  • Bonfiglio, J.J., Inda, C., Senin, S., Maccarrone, G., Refojo, D., Giacomini, D., Turck, C.W., Silberstein, S., B-Raf and CRHR1 internalization mediate biphasic ERK1/2 activation by CRH in hippocampal HT22 cells (2013) Mol. Endocrinol, 27, pp. 491-510. , http://dx.doi.org/10.1210/me.2012-1359
  • Carlson, A.E., Hille, B., Babcock, D.F., External Ca2+ acts upstream of adenylyl cyclase SACY in the bicarbonate signaled activation of sperm motility (2007) Dev. Biol, 312, pp. 183-192. , http://dx.doi.org/10.1016/j.ydbio.2007.09.017
  • Chen, Y., Cann, M.J., Litvin, T.N., Iourgenko, V., Sinclair, M.L., Levin, L.R., Buck, J., Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor (2000) Science, 289, pp. 625-628. , http://dx.doi.org/,http://dx.doi.org/10.1126/science.289.5479.625
  • Choi, H.B., Gordon, G.R., Zhou, N., Tai, C., Rungta, R.L., Martinez, J., Milner, T.A., Tresguerres, M., Metabolic communication between astrocytes and neurons via bicarbonateresponsive soluble adenylyl cyclase (2012) Neuron, 75, pp. 1094-1104. , http://dx.doi.org/10.1016/j.neuron.2012.08.032
  • Copsel, S., Garcia, C., Diez, F., Vermeulem, M., Baldi, A., Bianciotti, L.G., Russel, F.G., Davio, C., Multidrug resistance protein 4 (MRP4/ABCC4) regulates cAMP cellular levels and controls human leukemia cell proliferation and differentiation (2011) J. Biol. Chem, 286, pp. 6979-6988. , http://dx.doi.org/10.1074/jbc.M110.166868
  • Corredor, R.G., Trakhtenberg, E.F., Pita-Thomas, W., Jin, X., Hu, Y., Goldberg, J.L., Soluble adenylyl cyclase activity is necessary for retinal ganglion cell survival and axon growth (2012) J. Neurosci, 32, pp. 7734-7744. , http://dx.doi.org/10.1523/JNEUROSCI.5288-11.2012
  • Depry, C., Allen, M.D., Zhang, J., Visualization of PKA activity in plasma membrane microdomains (2011) Mol. Biosyst, 7, pp. 52-58. , http://dx.doi.org/10.1039/C0MB00079E
  • Feinstein, T.N., Wehbi, V.L., Ardura, J.A., Wheeler, D.S., Ferrandon, S., Gardella, T.J., Vilardaga, J.P., Retromer terminates the generation of cAMP by internalized PTH receptors (2011) Nat. Chem. Biol, 7, pp. 278-284. , http://dx.doi.org/10.1038/nchembio.545
  • Feinstein, T.N., Yui, N., Webber, M.J., Wehbi, V.L., Stevenson, H.P., King, J.D., Jr., Hallows, K.R., Vilardaga, J.P., Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin (2013) J. Biol. Chem, 288, pp. 27849-27860. , http://dx.doi.org/10.1074/jbc.M112.445098
  • Ferrandon, S., Feinstein, T.N., Castro, M., Wang, B., Bouley, R., Potts, J.T., Gardella, T.J., Vilardaga, J.P., Sustained cyclic AMP production by parathyroid hormone receptor endocytosis (2009) Nat. Chem. Biol, 5, pp. 734-742. , http://dx.doi.org/10.1038/nchembio.206
  • Flacke, J.P., Flacke, H., Appukuttan, A., Palisaar, R.J., Noldus, J., Robinson, B.D., Reusch, H.P., Ladilov, Y., Type 10 soluble adenylyl cyclase is overexpressed in prostate carcinoma and controls proliferation of prostate cancer cells (2013) J. Biol. Chem, 288, pp. 3126-3135. , http://dx.doi.org/10.1074/jbc.M112.403279
  • Gutknecht, E., Van der Linden, I., Van Kolen, K., Verhoeven, K.F., Vauquelin, G., Dautzenberg, F.M., Molecular mechanisms of corticotropinreleasing factor receptor-induced calcium signaling (2009) Mol. Pharmacol, 75, pp. 648-657. , http://dx.doi.org/10.1124/mol.108.050427
  • Halm, S.T., Zhang, J., Halm, D.R., beta-Adrenergic activation of electrogenic K+ and Cl-secretion in guinea pig distal colonic epithelium proceeds via separate cAMP signaling pathways (2010) Am. J. Physiol. Gastrointest. Liver Physiol, 299, pp. G81-G95. , http://dx.doi.org/10.1152/ajpgi.00035.2010
  • Han, H., Stessin, A., Roberts, J., Hess, K., Gautam, N., Kamenetsky, M., Lou, O., Muller, W.A., Calcium-sensing soluble adenylyl cyclase mediates TNF signal transduction in human neutrophils (2005) J. Exp. Med, 202, pp. 353-361. , http://dx.doi.org/10.1084/jem.20050778
  • Hess, K.C., Jones, B.H., Marquez, B., Chen, Y., Ord, T.S., Kamenetsky, M., Miyamoto, C., Suarez, S.S., The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization (2005) Dev. Cell, 9, pp. 249-259. , http://dx.doi.org/10.1016/j.devcel.2005.06.007
  • Holmes, K.D., Babwah, A.V., Dale, L.B., Poulter, M.O., Ferguson, S.S., Differential regulation of corticotropin releasing factor 1alpha receptor endocytosis and trafficking by beta-arrestins and Rab GTPases (2006) J. Neurochem, 96, pp. 934-949. , http://dx.doi.org/10.1111/j.1471-4159.2005.03603.x
  • Holsboer, F., Ising, M., Stress hormone regulation: Biological role and translation into therapy (2010) Annu. Rev. Psychol, 61, pp. 81-109. , http://dx.doi.org/10.1146/annurev.psych.093008.100321, C1-C11
  • Irannejad, R., von Zastrow, M., GPCR signaling along the endocytic pathway (2014) Curr. Opin. Cell Biol, 27, pp. 109-116. , http://dx.doi.org/10.1016/j.ceb.2013.10.003
  • Irannejad, R., Tomshine, J.C., Tomshine, J.R., Chevalier, M., Mahoney, J.P., Steyaert, J., Rasmussen, S.G., von Zastrow, M., Conformational biosensors reveal GPCR signalling from endosomes (2013) Nature, 495, pp. 534-538. , http://dx.doi.org/10.1038/nature12000
  • Ivonnet, P., Salathe, M., Conner, G.E., Hydrogen peroxide stimulation of CFTR reveals an Epac-mediated, soluble AC-dependent cAMP amplification pathway common to GPCR signalling (2015) Br. J. Pharmacol, 172, pp. 173-184. , http://dx.doi.org/10.1111/bph.12934
  • Jaiswal, B.S., Conti, M., Calcium regulation of the soluble adenylyl cyclase expressed in mammalian spermatozoa (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 10676-10681. , http://dx.doi.org/10.1073/pnas.1831008100
  • Kawasaki, H., Springett, G.M., Mochizuki, N., Toki, S., Nakaya, M., Matsuda, M., Housman, D.E., Graybiel, A.M., A family of cAMP-binding proteins that directly activate Rap1 (1998) Science, 282, pp. 2275-2279. , http://dx.doi.org/,http://dx.doi.org/10.1126/science.282.5397.2275
  • Klarenbeek, J., Goedhart, J., van Batenburg, A., Groenewald, D., Jalink, K., Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity (2015) PLoS One, 10. , http://dx.doi.org/10.1371/journal.pone.0122513
  • Kleinboelting, S., Diaz, A., Moniot, S., van den Heuvel, J., Weyand, M., Levin, L.R., Buck, J., Steegborn, C., Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 3727-3732. , http://dx.doi.org/10.1073/pnas.1322778111
  • Kotowski, S.J., Hopf, F.W., Seif, T., Bonci, A., von Zastrow, M., Endocytosis promotes rapid dopaminergic signaling (2011) Neuron, 71, pp. 278-290. , http://dx.doi.org/10.1016/j.neuron.2011.05.036
  • Kovalovsky, D., Refojo, D., Liberman, A.C., Hochbaum, D., Pereda, M.P., Coso, O.A., Stalla, G.K., Arzt, E., Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: Involvement of calcium, protein kinase A, and MAPK pathways (2002) Mol. Endocrinol, 16, pp. 1638-1651. , http://dx.doi.org/,http://dx.doi.org/10.1210/mend.16.7.0863
  • Kuna, R.S., Girada, S.B., Asalla, S., Vallentyne, J., Maddika, S., Patterson, J.T., Smiley, D.L., Mitra, P., Glucagon-like peptide-1 receptor-mediated endosomal cAMP generation promotes glucose-stimulated insulin secretion in pancreatic ß-cells (2013) Am. J. Physiol. Endocrinol. Metab, 305, pp. E161-E170. , http://dx.doi.org/10.1152/ajpendo.00551.2012
  • Lefkimmiatis, K., Leronni, D., Hofer, A.M., The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics (2013) J. Cell Biol, 202, pp. 453-462. , http://dx.doi.org/10.1083/jcb.201303159
  • Litvin, T.N., Kamenetsky, M., Zarifyan, A., Buck, J., Levin, L.R., Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate (2003) J. Biol. Chem, 278, pp. 15922-15926. , http://dx.doi.org/10.1074/jbc.M212475200
  • Liu, B., Hammer, G.D., Rubinstein, M., Mortrud, M., Low, M.J., Identification of DNA elements cooperatively activating proopiomelanocortin gene expression in the pituitary glands of transgenic mice (1992) Mol. Cell. Biol, 12, pp. 3978-3990. , http://dx.doi.org/,http://dx.doi.org/10.1128/MCB.12.9.3978
  • Lohse, M.J., Calebiro, D., Cell biology: Receptor signals come in waves (2013) Nature, 495, pp. 457-458. , http://dx.doi.org/10.1038/nature12086
  • Merriam, L.A., Baran, C.N., Girard, B.M., Hardwick, J.C., May, V., Parsons, R.L., Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability (2013) J. Neurosci, 33, pp. 4614-4622. , http://dx.doi.org/10.1523/JNEUROSCI.4999-12.2013
  • Oakley, R.H., Olivares-Reyes, J.A., Hudson, C.C., Flores-Vega, F., Dautzenberg, F.M., Hauger, R.L., Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and betaarrestin-2 recruitment: A mechanism regulating stress and anxiety responses (2007) Am. J. Physiol. Regul. Integr. Comp. Physiol, 293, pp. R209-R222. , http://dx.doi.org/10.1152/ajpregu.00099.2006
  • Onodera, Y., Nam, J.M., Bissell, M.J., Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways (2014) J. Clin. Invest, 124, pp. 367-384. , http://dx.doi.org/10.1172/JCI63146
  • Peeters, P.J., Göhlmann, H.W., Van den Wyngaert, I., Swagemakers, S.M., Bijnens, L., Kass, S.U., Steckler, T., Transcriptional response to corticotropin-releasing factor in AtT-20 cells (2004) Mol. Pharmacol, 66, pp. 1083-1092. , http://dx.doi.org/10.1124/mol.104.000950
  • Perry, S.J., Junger, S., Kohout, T.A., Hoare, S.R., Struthers, R.S., Grigoriadis, D.E., Maki, R.A., Distinct conformations of the corticotropin releasing factor type 1 receptor adopted following agonist and antagonist binding are differentially regulated (2005) J. Biol. Chem, 280, pp. 11560-11568. , http://dx.doi.org/10.1074/jbc.M412914200
  • Punn, A., Chen, J., Delidaki, M., Tang, J., Liapakis, G., Lehnert, H., Levine, M.A., Grammatopoulos, D.K., Mapping structural determinants within third intracellular loop that direct signaling specificity of type 1 corticotropin-releasing hormone receptor (2012) J. Biol. Chem, 287, pp. 8974-8985. , http://dx.doi.org/10.1074/jbc.M111.272161
  • Rajagopal, S., Rajagopal, K., Lefkowitz, R.J., Teaching old receptors new tricks: Biasing seven-transmembrane receptors (2010) Nat. Rev. Drug Discov, 9, pp. 373-386. , http://dx.doi.org/10.1038/nrd3024
  • Refojo, D., Echenique, C., Müller, M.B., Reul, J.M., Deussing, J.M., Wurst, W., Sillaber, I., Arzt, E., Corticotropinreleasing hormone activates ERK1/2 MAPK in specific brain areas (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 6183-6188. , http://dx.doi.org/10.1073/pnas.0502070102
  • Rehmann, H., Epac-inhibitors: Facts and artefacts (2013) Sci. Rep, 3, p. 3032. , http://dx.doi.org/10.1038/srep03032
  • Riebold, M., Kozany, C., Freiburger, L., Sattler, M., Buchfelder, M., Hausch, F., Stalla, G.K., Paez-Pereda, M., A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease (2015) Nat. Med, 21, pp. 276-280. , http://dx.doi.org/10.1038/nm.3776
  • Shenoy, S.K., Drake, M.T., Nelson, C.D., Houtz, D.A., Xiao, K., Madabushi, S., Reiter, E., Lefkowitz, R.J., beta-Arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor (2006) J. Biol. Chem, 281, pp. 1261-1273. , http://dx.doi.org/10.1074/jbc.M506576200
  • Steegborn, C., Litvin, T.N., Levin, L.R., Buck, J., Wu, H., Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment (2005) Nat. Struct. Mol. Biol, 12, pp. 32-37. , http://dx.doi.org/10.1038/nsmb880
  • Tresguerres, M., Levin, L.R., Buck, J., Intracellular cAMP signaling by soluble adenylyl cyclase (2011) Kidney Int, 79, pp. 1277-1288. , http://dx.doi.org/10.1038/ki.2011.95
  • Tsvetanova, N.G., von Zastrow, M., Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis (2014) Nat. Chem. Biol, 10, pp. 1061-1065. , http://dx.doi.org/10.1038/nchembio.1665
  • Van Kolen, K., Dautzenberg, F.M., Verstraeten, K., Royaux, I., De Hoogt, R., Gutknecht, E., Peeters, P.J., Corticotropin releasing factorinduced ERK phosphorylation in AtT20 cells occurs via a cAMPdependent mechanism requiring EPAC2 (2010) Neuropharmacology, 58, pp. 135-144. , http://dx.doi.org/10.1016/j.neuropharm.2009.06.022
  • Vilardaga, J.P., Jean-Alphonse, F.G., Gardella, T.J., Endosomal generation of cAMP in GPCR signaling (2014) Nat. Chem. Biol, 10, pp. 700-706. , http://dx.doi.org/10.1038/nchembio.1611
  • Watson, R.L., Buck, J., Levin, L.R., Winger, R.C., Wang, J., Arase, H., Muller, W.A., Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration (2015) J. Exp. Med, 212, pp. 1021-1041. , http://dx.doi.org/10.1084/jem.20150354
  • Wertheimer, E., Krapf, D., de la Vega-Beltran, J.L., Sánchez-Cárdenas, C., Navarrete, F., Haddad, D., Escoffier, J., Buck, J., Compartmentalization of distinct cAMP signaling pathways in mammalian sperm (2013) J. Biol. Chem, 288, pp. 35307-35320. , http://dx.doi.org/10.1074/jbc.M113.489476
  • Willoughby, D., Cooper, D.M., Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains (2007) Physiol. Rev, 87, pp. 965-1010. , http://dx.doi.org/10.1152/physrev.00049.2006
  • Wu, J., Abdelfattah, A.S., Miraucourt, L.S., Kutsarova, E., Ruangkittisakul, A., Zhou, H., Ballanyi, K., Rebane, A., A long Stokes shift red fluorescent Ca2+ indicator protein for two-photon and ratiometric imaging (2014) Nat. Commun, 5, p. 5262. , http://dx.doi.org/10.1038/ncomms6262
  • Wu, K.Y., Zippin, J.H., Huron, D.R., Kamenetsky, M., Hengst, U., Buck, J., Levin, L.R., Jaffrey, S.R., Soluble adenylyl cyclase is required for netrin-1 signaling in nerve growth cones (2006) Nat. Neurosci, 9, pp. 1257-1264. , http://dx.doi.org/10.1038/nn1767
  • Zhu, Y., Chen, H., Boulton, S., Mei, F., Ye, N., Melacini, G., Zhou, J., Cheng, X., Biochemical and pharmacological characterizations of ESI-09 based EPAC inhibitors: Defining the ESI-09 "therapeutic window" (2015) Sci. Rep, 5, p. 9344. , http://dx.doi.org/10.1038/srep09344
  • Zippin, J.H., Farrell, J., Huron, D., Kamenetsky, M., Hess, K.C., Fischman, D.A., Levin, L.R., Buck, J., Bicarbonate-responsive "soluble" adenylyl cyclase defines a nuclear cAMP microdomain (2004) J. Cell Biol, 164, pp. 527-534. , http://dx.doi.org/10.1083/jcb.200311119

Citas:

---------- APA ----------
Inda, C., Claro, P.A.S., Bonfiglio, J.J., Senin, S.A., Maccarrone, G., Turck, C.W. & Silberstein, S. (2016) . Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. Journal of Cell Biology, 214(2), 181-195.
http://dx.doi.org/10.1083/jcb.201512075
---------- CHICAGO ----------
Inda, C., Claro, P.A.S., Bonfiglio, J.J., Senin, S.A., Maccarrone, G., Turck, C.W., et al. "Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling" . Journal of Cell Biology 214, no. 2 (2016) : 181-195.
http://dx.doi.org/10.1083/jcb.201512075
---------- MLA ----------
Inda, C., Claro, P.A.S., Bonfiglio, J.J., Senin, S.A., Maccarrone, G., Turck, C.W., et al. "Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling" . Journal of Cell Biology, vol. 214, no. 2, 2016, pp. 181-195.
http://dx.doi.org/10.1083/jcb.201512075
---------- VANCOUVER ----------
Inda, C., Claro, P.A.S., Bonfiglio, J.J., Senin, S.A., Maccarrone, G., Turck, C.W., et al. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J. Cell Biol. 2016;214(2):181-195.
http://dx.doi.org/10.1083/jcb.201512075