Artículo

Zhang, X.; Cao, S.; Barila, G.; Edreira, M.M.; Wankhede, M.; Naim, N.; Buck, M.; Altschuler, D.L. "Cyclase-associated protein 1 (CAP1) is a prenyl-binding partner of Rap1 GTPase" (2018) Journal of Biological Chemistry. 293(20)
El editor no permite incluir ninguna versión del artículo en el Repositorio.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Rap1 proteins are members of the Ras subfamily of small GTPases involved in many biological responses, including adhesion, cell proliferation, and differentiation. Like all small GTPases, they work as molecular allosteric units that are active in signaling only when associated with the proper membrane compartment. Prenylation, occurring in the cytosol, is an enzymatic posttranslational event that anchors small GTPases at the membrane, and prenyl-binding proteins are needed to mask the cytoplasm-exposed lipid during transit to the target membrane. However, several of these proteins still await discovery. In this study, we report that cyclase-associated protein 1 (CAP1) binds Rap1. We found that this binding is GTP-independent, does not involve Rap1's effector domain, and is fully contained in its C-terminal hypervariable region (HVR). Furthermore, Rap1 prenylation was required for high-affinity interactions with CAP1 in a geranylgeranyl-specific manner. The prenyl binding specifically involved CAP1's C-terminal hydrophobic -sheet domain. We present a combination of experimental and computational approaches, yielding a model whereby the high-affinity binding between Rap1 and CAP1 involves electrostatic and nonpolar side-chain interactions between Rap1's HVR residues, lipid, and CAP1 -sheet domain. The binding was stabilized by the lipid insertion into the -solenoid whose interior was occupied by nonpolar side chains. This model was reminiscent of the recently solved structure of the PDE-K-Ras complex; accordingly, disruptors of this complex, e.g. deltarasin, blocked the Rap1-CAP1 interaction. These findings indicate that CAP1 is a geranylgeranyl-binding partner of Rap1. © 2018 Zhang et al.

Registro:

Documento: Artículo
Título:Cyclase-associated protein 1 (CAP1) is a prenyl-binding partner of Rap1 GTPase
Autor:Zhang, X.; Cao, S.; Barila, G.; Edreira, M.M.; Wankhede, M.; Naim, N.; Buck, M.; Altschuler, D.L.
Filiación:Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44116, United States
Center for Research on Reproduction and Women's Health, University of Pennsylvania Health System, Philadelphia, PA 19104, United States
IQUIBICEN-CONICET, Instituto en el Departamento de Química Biológica de la Facultad de Cíencias Exactas y Naturales, Universídad de Buenos Aires - Consejo Nacional de Investigaciones Cientí-ficas y Técnícas, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
Dept. of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, W1346 Biomedical Science Tower, 200 Lothrop St., Pittsburgh, PA 15261, United States
Palabras clave:Cell proliferation; Chains; Cytology; Binding partners; Biological response; Computational approach; Effector domains; High affinity binding; Membrane compartment; Prenyl-binding proteins; Side-chain interactions; Proteins; binding protein; cyclase associated protein 1; lipid; prenylamine; Rap1 protein; unclassified drug; CAP1 protein, human; cell cycle protein; cytoskeleton protein; diterpene; geranylgeranic acid; Rap protein; RAP1B protein, human; animal cell; beta sheet; binding affinity; carboxy terminal sequence; controlled study; human; human cell; nonhuman; priority journal; protein binding; protein domain; protein prenylation; protein protein interaction; rat; Review; static electricity; animal; cell culture; chemistry; genetics; metabolism; molecular dynamics; molecular model; protein conformation; protein prenylation; thyroid follicular cell; Animals; Cell Cycle Proteins; Cells, Cultured; Cytoskeletal Proteins; Diterpenes; Humans; Models, Molecular; Molecular Dynamics Simulation; Protein Conformation; Protein Prenylation; rap GTP-Binding Proteins; Rats; Thyroid Epithelial Cells
Año:2018
Volumen:293
Número:20
DOI: http://dx.doi.org/10.1074/jbc.RA118.001779
Título revista:Journal of Biological Chemistry
Título revista abreviado:J. Biol. Chem.
ISSN:00219258
CODEN:JBCHA
CAS:lipid, 66455-18-3; prenylamine, 390-64-7; CAP1 protein, human; Cell Cycle Proteins; Cytoskeletal Proteins; Diterpenes; geranylgeranic acid; rap GTP-Binding Proteins; RAP1B protein, human
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219258_v293_n20_p_Zhang

Referencias:

  • Pannekoek, W.J., Kooistra, M.R., Zwartkruis, F.J., Bos, J.L., Cell-cell junction formation: The role of Rap1 and Rap1 guanine nucleotide exchange factors (2009) Biochim. Biophys. Acta, 1788, pp. 790-796. , CrossRef Medline
  • Lagarrigue, F., Kim, C., Ginsberg, M.H., The Rap1-RIAM-talin axis of integrin activation and blood cell function (2016) Blood, 128, pp. 479-487. , CrossRef Medline
  • Zhu, L., Yang, J., Bromberger, T., Holly, A., Lu, F., Liu, H., Sun, K., Qin, J., Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation (2017) Nat. Commun., 8, p. 1744. , CrossRef Medline
  • Freeman, S.A., Lei, V., Dang-Lawson, M., Mizuno, K., Roskelley, C.D., Gold, M.R., Cofilin-mediated F-actin severing is regulated by the Rap GTPase and controls the cytoskeletal dynamics that drive lymphocyte spreading and BCR microcluster formation (2011) J. Immunol., 187, pp. 5887-5900. , CrossRef Medline
  • Lin, K.B., Freeman, S.A., Zabetian, S., Brugger, H., Weber, M., Lei, V., Dang-Lawson, M., Gold, M.R., The rap GTPases regulate B cell morphology, immune-synapse formation, and signaling by particulate B cell receptor ligands (2008) Immunity, 28, pp. 75-87. , CrossRef Medline
  • Wang, J.C., Lee, J.Y., Christian, S., Dang-Lawson, M., Pritchard, C., Freeman, S.A., Gold, M.R., The Rap1-cofilin-1 pathway coordinates actin reorganization and MTOC polarization at the B cell immune synapse (2017) J. Cell Sci., 130, pp. 1094-1109. , CrossRef Medline
  • Chung, J., Serezani, C.H., Huang, S.K., Stern, J.N., Keskin, D.B., Jagirdar, R., Brock, T.G., Peters-Golden, M., Rap1 activation is required for Fc gamma receptor-dependent phagocytosis (2008) J. Immunol., 181, pp. 5501-5509. , CrossRef Medline
  • Hoshino, T., Sakisaka, T., Baba, T., Yamada, T., Kimura, T., Takai, Y., Regulation of E-cadherin endocytosis by nectin through afadin, Rap1, and p120ctn (2005) J. Biol. Chem., 280, pp. 24095-24103. , CrossRef Medline
  • Van Hooren, K.W., Van Agtmaal, E.L., Fernandez-Borja, M., Van Mourik, J.A., Voorberg, J., Bierings, R., The Epac-Rap1 signaling pathway controls cAMP-mediated exocytosis of Weibel-Palade bodies in en-dothelial cells (2012) J. Biol. Chem., 287, pp. 24713-24720. , CrossRef Medline
  • York, R.D., Molliver, D.C., Grewal, S.S., Stenberg, P.E., McCleskey, E.W., Stork, P.J., Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1 (2000) Mol. Cell. Biol., 20, pp. 8069-8083. , CrossRef Medline
  • Shah, B., Lutter, D., Tsytsyura, Y., Glyvuk, N., Sakakibara, A., Klingauf, J., Püschel, A.W., Rap1 GTPases are master regulators of neural cell polarity in the developing neocortex (2017) Cereb. Cortex, 27, pp. 1253-1269. , CrossRef Medline
  • Altschuler, D.L., Ribeiro-Neto, F., Mitogenic and oncogenic properties of the small G protein Rap1b (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 7475-7479. , CrossRef Medline
  • Flacke, J.P., Flacke, H., Appukuttan, A., Palisaar, R.J., Noldus, J., Robinson, B.D., Reusch, H.P., Ladilov, Y., Type 10 soluble adenylyl cyclase is overexpressed in prostate carcinoma and controls proliferation of prostate cancer cells (2013) J. Biol. Chem., 288, pp. 3126-3135. , CrossRef Medline
  • Misra, U.K., Pizzo, S.V., Epac1-induced cellular proliferation in prostate cancer cells is mediated by B-Raf/ERK and mTOR signaling cascades (2009) J. Cell. Biochem., 108, pp. 998-1011. , CrossRef Medline
  • Ribeiro-Neto, F., Leon, A., Urbani-Brocard, J., Lou, L., Nyska, A., Altschuler, D.L., CAMP-dependent oncogenic action of Rap1b in the thyroid gland (2004) J. Biol. Chem., 279, pp. 46868-46875. , CrossRef Medline
  • Sun, W., Jiao, W., Huang, Y., Li, R., Zhang, Z., Wang, J., Lei, T., Exchange proteins directly activated by cAMP induce the proliferation of rat anterior pituitary GH3 cells via the activation of extracellular signal-regulated kinase (2017) Biochem. Biophys. Res. Commun., 485, pp. 355-359. , CrossRef Medline
  • Insel, P.A., Zhang, L., Murray, F., Yokouchi, H., Zambon, A.C., Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger (2012) Acta Physiol, 204, pp. 277-287. , CrossRef Medline
  • Mangmool, S., Hemplueksa, P., Parichatikanond, W., Chattipakorn, N., Epac is required for GLP-1R-mediated inhibition of oxidative stress and apoptosis in cardiomyocytes (2015) Mol. Endocrinol., 29, pp. 583-596. , CrossRef Medline
  • Suzuki, S., Yokoyama, U., Abe, T., Kiyonari, H., Yamashita, N., Kato, Y., Kurotani, R., Ishikawa, Y., Differential roles of Epac in regulating cell death in neuronal and myocardial cells (2010) J. Biol. Chem., 285, pp. 24248-24259. , CrossRef Medline
  • Khan, I., Ali, A., Akhter, M.A., Naeem, N., Chotani, M.A., Iqbal, H., Kabir, N., Salim, A., Epac-Rap1-activated mesenchy-mal stem cells improve cardiac function in rat model of myocardial infarction (2017) Cardiovasc. Ther., 35, p. e12248. , CrossRef Medline
  • Marada, S., Truong, A., Ogden, S.K., The small GTPase Rap1 is a modulator of Hedgehog signaling (2016) Dev. Biol., 409, pp. 84-94. , CrossRef Medline
  • Wu, Y., Zhou, J., Li, Y., Zhou, Y., Cui, Y., Yang, G., Hong, Y., Rap1A regulates osteoblastic differentiation via the ERK and p38 mediated signaling (2015) PLoS One, 10, p. e0143777. , CrossRef Medline
  • Zhang, Y.L., Wang, R.C., Cheng, K., Ring, B.Z., Su, L., Roles of Rap1 signaling in tumor cell migration and invasion (2017) Cancer Biol. Med., 14, pp. 90-99. , CrossRef Medline
  • Bos, J.L., Rehmann, H., Wittinghofer, A., GEFs and GAPs: Critical elements in the control of small G proteins (2007) Cell, 129, pp. 865-877. , CrossRef Medline
  • Guo, X.X., An, S., Yang, Y., Liu, Y., Hao, Q., Xu, T.R., Rap-interacting proteins are key players in the Rap symphony orchestra (2016) Cell. Physiol. Biochem., 39, pp. 137-156. , CrossRef Medline
  • Wittinghofer, A., Vetter, I.R., Structure-function relationships of the G domain, a canonical switch motif (2011) Annu. Rev. Biochem., 80, pp. 943-971. , CrossRef Medline
  • Prior, I.A., Hancock, J.F., Ras trafficking, localization and compartmentalized signalling (2012) Semin. Cell Dev. Biol., 23, pp. 145-153. , CrossRef Medline
  • Wang, M., Casey, P.J., Protein prenylation: Unique fats make their mark on biology (2016) Nat. Rev. Mol. Cell Biol., 17, pp. 110-122. , CrossRef Medline
  • Taylor, J.S., Reid, T.S., Terry, K.L., Casey, P.J., Beese, L.S., Structure of mammalian protein geranylgeranyltransferase type-I (2003) EMBO J, 22, pp. 5963-5974. , CrossRef Medline
  • Boyartchuk, V.L., Ashby, M.N., Rine, J., Modulation of Ras and a-factor function by carboxyl-terminal proteolysis (1997) Science, 275, pp. 1796-1800. , CrossRef Medline
  • Otto, J.C., Kim, E., Young, S.G., Casey, P.J., Cloning and characterization of a mammalian prenyl protein-specific protease (1999) J. Biol. Chem., 274, pp. 8379-8382. , CrossRef Medline
  • Hrycyna, C.A., Sapperstein, S.K., Clarke, S., Michaelis, S., The Saccharomyces cerevisiae STE14 gene encodes a methyltransferase that mediates C-terminal methylation of a-factor and RAS proteins (1991) EMBO J, 10, pp. 1699-1709. , Medline
  • Pillinger, M.H., Volker, C., Stock, J.B., Weissmann, G., Philips, M.R., Characterization of a plasma membrane-associated prenylcys-teine-directed carboxyl methyltransferase in human neutrophils (1994) J. Biol. Chem., 269, pp. 1486-1492. , Medline
  • Brunsveld, L., Waldmann, H., Huster, D., Membrane binding of lipidated Ras peptides and proteins-the structural point of view (2009) Biochim. Biophys. Acta, 1788, pp. 273-288. , CrossRef Medline
  • Hancock, J.F., Cadwallader, K., Paterson, H., Marshall, C.J., A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins (1991) EMBO J, 10, pp. 4033-4039. , Medline
  • Hancock, J.F., Paterson, H., Marshall, C.J., A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane (1990) Cell, 63, pp. 133-139. , CrossRef Medline
  • Zhou, Y., Prakash, P., Liang, H., Cho, K.J., Gorfe, A.A., Hancock, J.F., Lipid-sorting specificity encoded in K-Ras membrane anchor regulates signal output (2017) Cell, 168, pp. 239-251. , e216 CrossRef Medline
  • Hancock, J.F., Magee, A.I., Childs, J.E., Marshall, C.J., All ras proteins are polyisoprenylated but only some are palmitoylated (1989) Cell, 57, pp. 1167-1177. , CrossRef Medline
  • Rocks, O., Peyker, A., Kahms, M., Verveer, P.J., Koerner, C., Lumbierres, M., Kuhlmann, J., Bastiaens, P.I., An acylation cycle regulates localization and activity of palmitoylated Ras isoforms (2005) Science, 307, pp. 1746-1752. , CrossRef Medline
  • Pedro, M.P., Vilcaes, A.A., Gomez, G.A., Daniotti, J.L., Individual S-acylated cysteines differentially contribute to H-Ras endomembrane trafficking and acylation/deacylation cycles (2017) Mol. Biol. Cell, 28, pp. 962-974. , CrossRef Medline
  • Hoffman, G.R., Nassar, N., Cerione, R.A., Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI (2000) Cell, 100, pp. 345-356. , CrossRef Medline
  • Tnimov, Z., Guo, Z., Gambin, Y., Nguyen, U.T., Wu, Y.W., Abankwa, D., Stigter, A., Alexandrov, K., Quantitative analysis of prenylated RhoA interaction with its chaperone, RhoGDI (2012) J. Biol. Chem., 287, pp. 26549-26562. , CrossRef Medline
  • Wu, Y.W., Tan, K.T., Waldmann, H., Goody, R.S., Alexandrov, K., Interaction analysis of prenylated Rab GTPase with Rab escort protein and GDP dissociation inhibitor explains the need for both regulators (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 12294-12299. , CrossRef Medline
  • Riou, P., Kjær, S., Garg, R., Purkiss, A., George, R., Cain, R.J., Bineva, G., Ridley, A.J., 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins (2013) Cell, 153, pp. 640-653. , CrossRef Medline
  • Ismail, S.A., Chen, Y.X., Rusinova, A., Chandra, A., Bierbaum, M., Gremer, L., Triola, G., Wittinghofer, A., Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo (2011) Nat. Chem. Biol., 7, pp. 942-949. , CrossRef Medline
  • Wu, L.J., Xu, L.R., Liao, J.M., Chen, J., Liang, Y., Both the C-terminal polylysine region and the farnesylation of K-RasB are important for its specific interaction with calmodulin (2011) PLoS One, 6, p. e21929. , CrossRef Medline
  • Figueroa, C., Taylor, J., Vojtek, A.B., Prenylated Rab acceptor protein is a receptor for prenylated small GTPases (2001) J. Biol. Chem., 276, pp. 28219-28225. , CrossRef Medline
  • Rotblat, B., Niv, H., André, S., Kaltner, H., Gabius, H.J., Kloog, Y., Galectin-1(L11A) predicted from a computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-GTP (2004) Cancer Res, 64, pp. 3112-3118. , CrossRef Medline
  • Zhou, M., Wiener, H., Su, W., Zhou, Y., Liot, C., Ahearn, I., Hancock, J.F., Philips, M.R., VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking (2016) J. Cell Biol., 214, pp. 445-458. , CrossRef Medline
  • Schuld, N.J., Vervacke, J.S., Lorimer, E.L., Simon, N.C., Hauser, A.D., Barbieri, J.T., Distefano, M.D., Williams, C.L., The chaperone protein SmgGDS interacts with small GTPases entering the prenylation pathway by recognizing the last amino acid in the CAAX motif (2014) J. Biol. Chem., 289, pp. 6862-6876. , CrossRef Medline
  • Berg, T.J., Gastonguay, A.J., Lorimer, E.L., Kuhnmuench, J.R., Li, R., Fields, A.P., Williams, C.L., Splice variants of SmgGDS control small GTPase prenylation and membrane localization (2010) J. Biol. Chem., 285, pp. 35255-35266. , CrossRef Medline
  • Hubberstey, A.V., Mottillo, E.P., Cyclase-associated proteins: CAPacity for linking signal transduction and actin polymerization (2002) FASEB J, 16, pp. 487-499. , CrossRef Medline
  • Dharmaiah, S., Bindu, L., Tran, T.H., Gillette, W.K., Frank, P.H., Ghirlando, R., Nissley, D.V., Simanshu, D.K., Structural basis of recognition of farnesylated and methylated KRAS4b by PDE (2016) Proc. Natl. Acad. Sci. U.S.A., 113, pp. E6766-E6775. , CrossRef Medline
  • Zimmermann, G., Papke, B., Ismail, S., Vartak, N., Chandra, A., Hoffmann, M., Hahn, S.A., Waldmann, H., Small molecule inhibition of the KRAS-PDE interaction impairs oncogenic KRAS signalling (2013) Nature, 497, pp. 638-642. , CrossRef Medline
  • Rodriguez-Viciana, P., Sabatier, C., McCormick, F., Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate (2004) Mol. Cell. Biol., 24, pp. 4943-4954. , CrossRef Medline
  • Dodatko, T., Fedorov, A.A., Grynberg, M., Patskovsky, Y., Rozwarski, D.A., Jaroszewski, L., Aronoff-Spencer, E., Almo, S.C., Crystal structure of the actin binding domain of the cyclase-associated protein (2004) Biochemistry, 43, pp. 10628-10641. , CrossRef Medline
  • Dursina, B., Reents, R., Delon, C., Wu, Y., Kulharia, M., Thutewohl, M., Veligodsky, A., Alexandrov, K., Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids (2006) J. Am. Chem. Soc., 128, pp. 2822-2835. , CrossRef Medline
  • Papke, B., Murarka, S., Vogel, H.A., Martín-Gago, P., Kovacevic, M., Truxius, D.C., Fansa, E.K., Wittinghofer, A., Identification of pyrazolopyridazinones as PDE inhibitors (2016) Nat. Commun., 7, p. 11360. , CrossRef Medline
  • Altschuler, D., Lapetina, E.G., Mutational analysis of the cAMP-dependent protein kinase-mediated phosphorylation site of Rap1b (1993) J. Biol. Chem., 268, pp. 7527-7531. , Medline
  • Edreira, M.M., Li, S., Hochbaum, D., Wong, S., Gorfe, A.A., Ribeiro-Neto, F., Woods, V.L., Jr., Altschuler, D.L., Phosphorylation-induced conformational changes in Rap1b: Allosteric effects on switch domains and effector loop (2009) J. Biol. Chem., 284, pp. 27480-27486. , CrossRef Medline
  • Fedor-Chaiken, M., Deschenes, R.J., Broach, J.R., SRV2, a gene required for RAS activation of adenylate cyclase in yeast (1990) Cell, 61, pp. 329-340. , CrossRef Medline
  • Field, J., Vojtek, A., Ballester, R., Bolger, G., Colicelli, J., Ferguson, K., Gerst, J., Wigler, M., Cloning and characterization of CAP, the S. Cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein (1990) Cell, 61, pp. 319-327. , CrossRef Medline
  • Ono, S., The role of cyclase-associated protein in regulating actin filament dynamics-more than a monomer-sequestration factor (2013) J. Cell Sci., 126, pp. 3249-3258. , CrossRef Medline
  • Chaudhry, F., Breitsprecher, D., Little, K., Sharov, G., Sokolova, O., Goode, B.L., Srv2/cyclase-associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin (2013) Mol. Biol. Cell, 24, pp. 31-41. , CrossRef Medline
  • Jansen, S., Collins, A., Golden, L., Sokolova, O., Goode, B.L., Structure and mechanism of mouse cyclase-associated protein (CAP1) in regulating actin dynamics (2014) J. Biol. Chem., 289, pp. 30732-30742. , CrossRef Medline
  • Iwase, S., Ono, S., The C-terminal dimerization motif of cyclase-associated protein is essential for actin monomer regulation (2016) Biochem. J., 473, pp. 4427-4441. , CrossRef Medline
  • Zelicof, A., Protopopov, V., David, D., Lin, X.Y., Lustgarten, V., Gerst, J.E., Two separate functions are encoded by the carboxyl-terminal domains of the yeast cyclase-associated protein and its mammalian homologs. Dimerization and actin binding (1996) J. Biol. Chem., 271, pp. 18243-18252. , CrossRef Medline
  • Iwase, S., Ono, S., Conserved hydrophobic residues in the CARP/-sheet domain of cyclase-associated protein are involved in actin monomer regulation (2017) Cytoskeleton, 74, pp. 343-355. , CrossRef Medline
  • Zhang, H., Constantine, R., Frederick, J.M., Baehr, W., The prenyl-binding protein PrBP/: A chaperone participating in intracellular trafficking (2012) Vision Res, 75, pp. 19-25. , CrossRef Medline
  • Banerjee, A., Jang, H., Nussinov, R., Gaponenko, V., The disordered hypervariable region and the folded catalytic domain of oncogenic K-Ras4B partner in phospholipid binding (2016) Curr. Opin. Struct. Biol., 36, pp. 10-17. , CrossRef Medline
  • Hochbaum, D., Barila, G., Ribeiro-Neto, F., Altschuler, D.L., Radixin assembles cAMP effectors Epac and PKA into a functional cAMP compartment: Role in cAMP-dependent cell proliferation (2011) J. Biol. Chem., 286, pp. 859-866. , CrossRef Medline
  • Hochbaum, D., Hong, K., Barila, G., Ribeiro-Neto, F., Altschuler, D.L., Epac, in synergy with cAMP-dependent protein kinase (PKA), is required for cAMP-mediated mitogenesis (2008) J. Biol. Chem., 283, pp. 4464-4468. , CrossRef Medline
  • Ribeiro-Neto, F., Urbani, J., Lemee, N., Lou, L., Altschuler, D.L., On the mitogenic properties of Rap1b: cAMP-induced G 1 /S entry requires activated and phosphorylated Rap1b (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 5418-5423. , CrossRef Medline
  • Wilson, J.M., Lorimer, E., Tyburski, M.D., Williams, C.L., Adrenergic receptors suppress Rap1B prenylation and promote the metastatic phenotype in breast cancer cells (2015) Cancer Biol. Ther., 16, pp. 1364-1374. , CrossRef Medline
  • Wilson, J.M., Prokop, J.W., Lorimer, E., Ntantie, E., Williams, C.L., Differences in the phosphorylation-dependent regulation of prenylation of Rap1A and Rap1B (2016) J. Mol. Biol., 428, pp. 4929-4945. , CrossRef Medline
  • Zhou, G.L., Zhang, H., Wu, H., Ghai, P., Field, J., Phosphorylation of the cytoskeletal protein CAP1 controls its association with cofilin and actin (2014) J. Cell Sci., 127, pp. 5052-5065. , CrossRef Medline
  • Takahashi, M., Li, Y., Dillon, T.J., Stork, P.J., Phosphorylation of Rap1 by cAMP-dependent protein kinase (PKA) creates a binding site for KSR to sustain ERK activation by cAMP (2017) J. Biol. Chem., 292, pp. 1449-1461. , CrossRef Medline
  • Goitre, L., Cutano, V., Retta, S.F., Fluorescence microscopy study of Rap1 subcellular localization (2014) Methods Mol. Biol., 1120, pp. 197-205. , CrossRef Medline
  • Bertling, E., Hotulainen, P., Mattila, P.K., Matilainen, T., Salminen, M., Lappalainen, P., Cyclase-associated protein 1 (CAP1) promotes cofilin-induced actin dynamics in mammalian nonmuscle cells (2004) Mol. Biol. Cell, 15, pp. 2324-2334. , CrossRef Medline
  • Freeman, N.L., Field, J., Mammalian homolog of the yeast cyclase associated protein, CAP/Srv2p, regulates actin filament assembly (2000) Cell Motil. Cytoskeleton, 45, pp. 106-120. , CrossRef Medline
  • Moriyama, K., Yahara, I., Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover (2002) J. Cell Sci., 115, pp. 1591-1601. , Medline
  • Balcer, H.I., Goodman, A.L., Rodal, A.A., Smith, E., Kugler, J., Heuser, J.E., Goode, B.L., Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1 (2003) Curr. Biol., 13, pp. 2159-2169. , CrossRef Medline
  • Quintero-Monzon, O., Jonasson, E.M., Bertling, E., Talarico, L., Chaudhry, F., Sihvo, M., Lappalainen, P., Goode, B.L., Reconstitution and dissection of the 600-kDa Srv2/CAP complex: Roles for oligomerization and cofilin-actin binding in driving actin turnover (2009) J. Biol. Chem., 284, pp. 10923-10934. , CrossRef Medline
  • Normoyle, K.P., Brieher, W.M., Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH (2012) J. Biol. Chem., 287, pp. 35722-35732. , CrossRef Medline
  • Bertling, E., Quintero-Monzon, O., Mattila, P.K., Goode, B.L., Lappalainen, P., Mechanism and biological role of profilin-Srv2/CAP interaction (2007) J. Cell Sci., 120, pp. 1225-1234. , CrossRef Medline
  • Makkonen, M., Bertling, E., Chebotareva, N.A., Baum, J., Lappalainen, P., Mammalian and malaria parasite cyclase-associated proteins catalyze nucleotide exchange on G-actin through a conserved mechanism (2013) J. Biol. Chem., 288, pp. 984-994. , CrossRef Medline
  • Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., Scalable molecular dynamics with NAMD (2005) J. Comput. Chem., 26, pp. 1781-1802. , CrossRef Medline
  • Bao, Z., Qiu, X., Wang, D., Ban, N., Fan, S., Chen, W., Sun, J., Cui, G., High expression of adenylate cyclase-associated protein 1 accelerates the proliferation, migration and invasion of neural glioma cells (2016) Pathol. Res. Pract., 212, pp. 264-273. , CrossRef Medline
  • Fan, Y.C., Cui, C.C., Zhu, Y.S., Zhang, L., Shi, M., Yu, J.S., Bai, J., Zheng, J.N., Overexpression of CAP1 and its significance in tumor cell proliferation, migration and invasion in glioma (2016) Oncol. Rep., 36, pp. 1619-1625. , CrossRef Medline
  • Hua, M., Yan, S., Deng, Y., Xi, Q., Liu, R., Yang, S., Liu, J., Zhong, J., CAP1 is overexpressed in human epithelial ovarian cancer and promotes cell proliferation (2015) Int. J. Mol. Med., 35, pp. 941-949. , CrossRef Medline
  • Kakurina, G.V., Kondakova, I.V., Cheremisina, O.V., Shishkin, D.A., Choinzonov, E.L., Adenylyl cyclase-associated protein 1 in the development of head and neck squamous cell carcinomas (2016) Bull. Exp. Biol. Med., 160, pp. 695-697. , CrossRef Medline
  • Liu, X., Yao, N., Qian, J., Huang, H., High expression and prognostic role of CAP1 and CtBP2 in breast carcinoma: Associated with E-cadherin and cell proliferation (2014) Med. Oncol., 31, p. 878. , CrossRef Medline
  • Liu, Y., Cui, X., Hu, B., Lu, C., Huang, X., Cai, J., He, S., Ni, R., Upregulated expression of CAP1 is associated with tumor migration and metastasis in hepatocellular carcinoma (2014) Pathol. Res. Pract., 210, pp. 169-175. , CrossRef Medline
  • Masugi, Y., Tanese, K., Emoto, K., Yamazaki, K., Effendi, K., Funakoshi, T., Mori, M., Sakamoto, M., Overexpression of adenylate cyclase-associated protein 2 is a novel prognostic marker in malignant melanoma (2015) Pathol. Int., 65, pp. 627-634. , CrossRef Medline
  • Tan, M., Song, X., Zhang, G., Peng, A., Li, X., Li, M., Liu, Y., Wang, C., Overexpression of adenylate cyclase-associated protein 1 is associated with metastasis of lung cancer (2013) Oncol. Rep., 30, pp. 1639-1644. , CrossRef Medline
  • Xie, S.S., Tan, M., Lin, H.Y., Xu, L., Shen, C.X., Yuan, Q., Song, X.L., Wang, C.H., Overexpression of adenylate cyclase-associated protein 1 may predict brain metastasis in non-small cell lung cancer (2015) Oncol. Rep., 33, pp. 363-371. , CrossRef Medline
  • Yamazaki, K., Takamura, M., Masugi, Y., Mori, T., Du, W., Hibi, T., Hiraoka, N., Sakamoto, M., Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility (2009) Lab. Invest., 89, pp. 425-432. , CrossRef Medline
  • Yu, X.F., Ni, Q.C., Chen, J.P., Xu, J.F., Jiang, Y., Yang, S.Y., Ma, J., Wang, Y.Y., Knocking down the expression of adenylate cyclase-associated protein 1 inhibits the proliferation and migration of breast cancer cells (2014) Exp. Mol. Pathol., 96, pp. 188-194. , CrossRef Medline
  • Zhang, H., Zhou, G.L., CAP1 (cyclase-associated protein 1) exerts distinct functions in the proliferation and metastatic potential of breast cancer cells mediated by ERK (2016) Sci. Rep., 6, p. 25933. , CrossRef Medline
  • Xie, S., Shen, C., Tan, M., Li, M., Song, X., Wang, C., Systematic analysis of gene expression alterations and clinical outcomes of adenylate cyclase-associated protein in cancer (2017) Oncotarget, 8, pp. 27216-27239. , CrossRef Medline
  • Altschuler, D.L., Peterson, S.N., Ostrowski, M.C., Lapetina, E.G., Cyclic AMP-dependent activation of Rap1b (1995) J. Biol. Chem., 270, pp. 10373-10376. , CrossRef Medline
  • Vanommeslaeghe, K., Raman, E.P., MacKerell, A.D., Jr., Automation of the CHARMM general force field (CGenFF) II: Assignment of bonded parameters and partial atomic charges (2012) J. Chem. Inf. Model., 52, pp. 3155-3168. , CrossRef Medline
  • Buck, M., Bouguet-Bonnet, S., Pastor, R.W., MacKerell, A.D., Jr., Importance of the CMAP correction to the CHARMM22 protein force field: Dynamics of hen lysozyme (2006) Biophys. J., 90, pp. L36-L38. , CrossRef Medline
  • Huang, J., MacKerell, A.D., Jr., CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data (2013) J. Comput. Chem., 34, pp. 2135-2145. , CrossRef Medline
  • MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Mattos, C., All-atom empirical potential for molecular modeling and dynamics studies of proteins (1998) J. Phys. Chem. B, 102, pp. 3586-3616. , CrossRef Medline
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935
  • Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G., A smooth particle mesh Ewald method (1995) J. Chem. Phys., 103, pp. 8577-8593

Citas:

---------- APA ----------
Zhang, X., Cao, S., Barila, G., Edreira, M.M., Wankhede, M., Naim, N., Buck, M.,..., Altschuler, D.L. (2018) . Cyclase-associated protein 1 (CAP1) is a prenyl-binding partner of Rap1 GTPase. Journal of Biological Chemistry, 293(20).
http://dx.doi.org/10.1074/jbc.RA118.001779
---------- CHICAGO ----------
Zhang, X., Cao, S., Barila, G., Edreira, M.M., Wankhede, M., Naim, N., et al. "Cyclase-associated protein 1 (CAP1) is a prenyl-binding partner of Rap1 GTPase" . Journal of Biological Chemistry 293, no. 20 (2018).
http://dx.doi.org/10.1074/jbc.RA118.001779
---------- MLA ----------
Zhang, X., Cao, S., Barila, G., Edreira, M.M., Wankhede, M., Naim, N., et al. "Cyclase-associated protein 1 (CAP1) is a prenyl-binding partner of Rap1 GTPase" . Journal of Biological Chemistry, vol. 293, no. 20, 2018.
http://dx.doi.org/10.1074/jbc.RA118.001779
---------- VANCOUVER ----------
Zhang, X., Cao, S., Barila, G., Edreira, M.M., Wankhede, M., Naim, N., et al. Cyclase-associated protein 1 (CAP1) is a prenyl-binding partner of Rap1 GTPase. J. Biol. Chem. 2018;293(20).
http://dx.doi.org/10.1074/jbc.RA118.001779