Erlejman, A.G.; De Leo, S.A.; Mazaira, G.I.; Molinari, A.M.; Camisay, M.F.; Fontana, V.; Cox, M.B.; Piwien-Pilipuk, G.; Galigniana, M.D. "NF-κB transcriptional activity is modulated by FK506-Binding proteins FKBP51 and FKBP52:A role for peptidyl-prolyl isomerase activity" (2014) Journal of Biological Chemistry. 289(38):26263-26276
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Hsp90 binding immunophilins FKBP51 and FKBP52 modulate steroid receptor trafficking and hormone-dependent biological responses. With the purpose to expand this model to other nuclear factors that are also subject to nuclear-cytoplasmic shuttling, we analyzed whether these immunophilins modulate NF-κB signaling. It is demonstrated that FKBP51 impairs both the nuclear translocation rate of NF-κB and its transcriptional activity. The inhibitory action of FKBP51 requires neither the peptidylprolyl-isomerase activity of the immunophilin nor its association with Hsp90. The TPR domain of FKBP51 is essential. On the other hand, FKBP52 favors the nuclear retention time of RelA, its association to a DNA consensus binding sequence, and NF-κB transcriptional activity, the latter effect being strongly dependent on the peptidylprolyl-isomerase activity and also on the TPR domain of FKBP52, but its interaction with Hsp90 is not required. In unstimulated cells, FKBP51 forms endogenous complexes with cytoplasmic RelA. Upon cell stimulation with phorbol ester, the NF-κB soluble complex exchanges FKBP51 for FKBP52, and the NF-κB biological effect is triggered. Importantly, FKBP52 is functionally recruited to the promoter region of NF-κB target genes, whereas FKBP51 is released. Competition assays demonstrated that both immunophilins antagonize one another, and binding assays with purified proteins suggest that the association of RelA and immunophilins could be direct. These observations suggest that the biological action of NF-κB in different cell types could be positively regulated by a high FKBP52/FKBP51 expression ratio by favoring NF-κB nuclear retention, recruitment to the promoter regions of target genes, and transcriptional activity


Documento: Artículo
Título:NF-κB transcriptional activity is modulated by FK506-Binding proteins FKBP51 and FKBP52:A role for peptidyl-prolyl isomerase activity
Autor:Erlejman, A.G.; De Leo, S.A.; Mazaira, G.I.; Molinari, A.M.; Camisay, M.F.; Fontana, V.; Cox, M.B.; Piwien-Pilipuk, G.; Galigniana, M.D.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Quimica Biologica de Ciencias Exactas y Naturales, Buenos Aires, C1428ADN, Argentina
Border Biomedical Research Center and Department of Biological Sciences, University of Texas, El Paso, TX 79968, United States
Laboratorio de Arquitectura Nuclear, Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, C1428ADN, Argentina
Laboratorio de Receptores Nucleares, Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, C1428ADN, Argentina
Palabras clave:fk 506 binding protein; glucocorticoid receptor; protein binding; RELA protein, human; tacrolimus binding protein 4; tacrolimus binding protein 5; transcription factor RelA; active transport; animal; cell nucleus; genetic transcription; HEK293 cell line; human; metabolism; physiology; promoter region; protein domain; rat; transcription initiation; Active Transport, Cell Nucleus; Animals; Cell Nucleus; HEK293 Cells; Humans; Promoter Regions, Genetic; Protein Binding; Protein Interaction Domains and Motifs; Rats; Receptors, Glucocorticoid; Tacrolimus Binding Proteins; Transcription Factor RelA; Transcription, Genetic; Transcriptional Activation
Página de inicio:26263
Página de fin:26276
Título revista:Journal of Biological Chemistry
Título revista abreviado:J. Biol. Chem.
CAS:Receptors, Glucocorticoid; RELA protein, human; tacrolimus binding protein 4; tacrolimus binding protein 5; Tacrolimus Binding Proteins; Transcription Factor RelA


  • Sen, R., Baltimore, D., Multiple nuclear factors interact with the immunoglobulin enhancer sequences (1986) Cell, 46, pp. 705-716
  • Hoesel, B., Schmid, J.A., The complexity of NF-κB signaling in inflammation and cancer (2013) Mol. Cancer, 12, 86p
  • Diamant, G., Dikstein, R., Transcriptional control by NF-κB: Elongation in focus (2013) Biochim. Biophys. Acta, 1829, pp. 937-945
  • Tornatore, L., Thotakura, A.K., Bennett, J., Moretti, M., Franzoso, G., The nuclear factor κb signaling pathway: Integrating metabolism with inflammation (2012) Trends Cell Biol., 22, pp. 557-566
  • Oeckinghaus, A., Ghosh, S., The NF-κB family of transcription factors and its regulation (2009) Cold Spring Harb. Perspect. Biol., 1, p. a000034
  • Hoffmann, A., Natoli, G., Ghosh, G., Transcriptional regulation via the NF-κB signaling module (2006) Oncogene, 25, pp. 6706-6716
  • Ciechanover, A., Gonen, H., Bercovich, B., Cohen, S., Fajerman, I., Israël, A., Mercurio, F., Orian, A., Mechanisms of ubiquitin-mediated, limited processing of the NF-κB1 precursor protein p105 (2001) Biochimie, 83, pp. 341-349
  • Gilmore, T.D., The Rel/NF-κB signal transduction pathway: Introduction (1999) Oncogene, 18, pp. 6842-6844
  • Birbach, A., Gold, P., Binder, B.R., Hofer, E., De Martin, R., Schmid, J.A., Signaling molecules of the NF-κ B pathway shuttle constitutively between cytoplasm and nucleus (2002) J. Biol. Chem., 277, pp. 10842-10851
  • Huang, T.T., Kudo, N., Yoshida, M., Miyamoto, S., A nuclear export signal in the N-terminal regulatory domain of IκBα controls cytoplasmic localization of inactive NF-κB/IκBα complexes (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 1014-1019
  • Mikenberg, I., Widera, D., Kaus, A., Kaltschmidt, B., Kaltschmidt, C., Transcription factor NF-κB is transported to the nucleus via cytoplasmic dynein/dynactin motor complex in hippocampal neurons (2007) PLoS ONE, 2, p. e589
  • Elbi, C., Walker, D.A., Romero, G., Sullivan, W.P., Toft, D.O., Hager, G.L., Defranco, D.B., Molecular chaperones function as steroid receptor nuclear mobility factors (2004) Proc. Natl. Acad. Sci. U.S.A., 101, pp. 2876-2881
  • Madan, A.P., Defranco, D.B., Bidirectional transport of glucocorticoid receptors across the nuclear envelope (1993) Proc. Natl. Acad. Sci. U.S.A., 90, pp. 3588-3592
  • Galigniana, M.D., Echeverría, P.C., Erlejman, A.G., Piwien-Pilipuk, G., Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore (2010) Nucleus, 1, pp. 299-308
  • Galigniana, M.D., Radanyi, C., Renoir, J.M., Housley, P.R., Pratt, W.B., Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus (2001) J. Biol. Chem., 276, pp. 14884-14889
  • Davies, T.H., Ning, Y.M., Sánchez, E.R., A new first step in activation of steroid receptors: Hormone-induced switching of FKBP51 and FKBP52 immunophilins (2002) J. Biol. Chem., 277, pp. 4597-4600
  • Galigniana, M.D., Erlejman, A.G., Monte, M., Gomez-Sanchez, C., Piwien-Pilipuk, G., The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events (2010) Mol. Cell. Biol., 30, pp. 1285-1298
  • Gallo, L.I., Ghini, A.A., Piwien Pilipuk, G., Galigniana, M.D., Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional ac-tivity (2007) Biochemistry, 46, pp. 14044-14057
  • Wochnik, G.M., Rüegg, J., Abel, G.A., Schmidt, U., Holsboer, F., Rein, T., FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells (2005) J. Biol. Chem., 280, pp. 4609-4616
  • Riggs, D.L., Roberts, P.J., Chirillo, S.C., Cheung-Flynn, J., Prapapanich, V., Ratajczak, T., Gaber, R., Smith, D.F., The Hsp90 binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo (2003) EMBO J., 22, pp. 1158-1167
  • Tranguch, S., Cheung-Flynn, J., Daikoku, T., Prapapanich, V., Cox, M.B., Xie, H., Wang, H., Dey, S.K., Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 14326-14331
  • Yang, Z., Wolf, I.M., Chen, H., Periyasamy, S., Chen, Z., Yong, W., Shi, S., Shou, W., FK506- binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform (2006) Mol. Endocrinol., 20, pp. 2682-2694
  • Cheung-Flynn, J., Prapapanich, V., Cox, M.B., Riggs, D.L., Suarez-Quian, C., Smith, D.F., Physiological role for the cochaperone FKBP52 in androgen receptor signaling (2005) Mol. Endocrinol., 19, pp. 1654-1666
  • Periyasamy, S., Hinds, T., Jr., Shemshedini, L., Shou, W., Sanchez, E.R., FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A (2010) Oncogene, 29, pp. 1691-1701
  • Schülke, J.P., Wochnik, G.M., Lang-Rollin, I., Gassen, N.C., Knapp, R.T., Berning, B., Yassouridis, A., Rein, T., Differential impact of tetratricopeptide repeat proteins on the steroid hormone receptors (2010) PLoS ONE, 5, p. e11717
  • Cioffi, D.L., Hubler, T.R., Scammell, J.G., Organization and function of the FKBP52 and FKBP51 genes (2011) Curr. Opin. Pharmacol., 11, pp. 308-313
  • Sivils, J.C., Storer, C.L., Galigniana, M.D., Cox, M.B., Regulation of steroid hormone receptor function by the 52-kDa FK506-binding protein (FKBP52) (2011) Curr. Opin. Pharmacol., 11, pp. 314-319
  • Storer, C.L., Dickey, C.A., Galigniana, M.D., Rein, T., Cox, M.B., FKBP51 and FKBP52 in signaling and disease (2011) Trends Endocrinol. Metab., 22, pp. 481-490
  • Galigniana, M.D., Steroid receptor coupling becomes nuclear (2012) Chem. Biol., 19, pp. 662-663
  • Fontana, V., Coll, T.A., Sobarzo, C.M., Tito, L.P., Calvo, J.C., Cebral, E., Matrix metalloproteinase expression and activity in trophoblastdecidual tissues at organogenesis in CF-1 mouse (2012) J. Mol. Histol., 43, pp. 487-496
  • Quintá, H.R., Maschi, D., Gomez-Sanchez, C., Piwien-Pilipuk, G., Galigniana, M.D., Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth (2010) J. Neurochem., 115, pp. 716-734
  • Gallo, L.I., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D., The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress (2011) J. Biol. Chem., 286, pp. 30152-30160
  • Quintá, H.R., Galigniana, M.D., The neuroregenerative mechanism mediated by the Hsp90 binding immunophilin FKBP52 resembles the early steps of neuronal differentiation (2012) Br. J. Pharmacol., 166, pp. 637-649
  • Erlejman, A.G., Jaggers, G., Fraga, C.G., Oteiza, P.I., TNFα- induced NF-κB activation and cell oxidant production are modulated by hexameric procyanidins in Caco-2 cells (2008) Arch. Biochem. Biophys., 476, pp. 186-195
  • Susperreguy, S., Prendes, L.P., Desbats, M.A., Charó, N.L., Brown, K., Macdougald, O.A., Kerppola, T., Piwien-Pilipuk, G., Visualization by BiFC of different C/EBPβ dimers and their interaction with HP1α reveals a differential subnuclear distribution of complexes in living cells (2011) Exp. Cell Res., 317, pp. 706-723
  • Piwien Pilipuk, G., Vinson, G.P., Sanchez, C.G., Galigniana, M.D., Evidence for NL1-independent nuclear translocation of the mineralocorticoid receptor (2007) Biochemistry, 46, pp. 1389-1397
  • Galigniana, M.D., Harrell, J.M., O'Hagen, H.M., Ljungman, M., Pratt, W.B., Hsp90 binding immunophilins link p53 to dynein during p53 transport to the nucleus (2004) J. Biol. Chem., 279, pp. 22483-22489
  • Colo, G.P., Rubio, M.F., Nojek, I.M., Werbajh, S.E., Echeverría, P.C., Alvarado, C.V., Nahmod, V.E., Costas, M.A., The p160 nuclear receptor co-activator RAC3 exerts an anti-apoptotic role through a cytoplasmatic action (2008) Oncogene, 27, pp. 2430-2444
  • Sanchez, E.R., Chaperoning steroidal physiology: Lessons from mouse genetic models of Hsp90 and its cochaperones (2012) Biochim. Biophys. Acta, 1823, pp. 722-729
  • Mackenzie, G.G., Keen, C.L., Oteiza, P.I., Microtubules are required for NF-κB nuclear translocation in neuroblastoma IMR-32 cells: Modulation by zinc (2006) J. Neurochem., 99, pp. 402-415
  • Nelson, G., Paraoan, L., Spiller, D.G., Wilde, G.J., Browne, M.A., Djali, P.K., Unitt, J.F., White, M.R., Multi-parameter analysis of the kinetics of NF-κB signalling and transcription in single living cells (2002) J. Cell Sci., 115, pp. 1137-1148
  • Hohmann, H.P., Remy, R., Scheidereit, C., Van Loon, A.P., Maintenance of NF-κ B activity is dependent on protein synthesis and the continuous presence of external stimuli (1991) Mol. Cell. Biol., 11, pp. 259-266
  • Banerjee, A., Periyasamy, S., Wolf, I.M., Hinds, T.D., Jr., Yong, W., Shou, W., Sanchez, E.R., Control of glucocorticoid and progesterone receptor subcellular localization by the ligand-binding domain is mediated by distinct interactions with tetratricopeptide repeat proteins (2008) Biochemistry, 47, pp. 10471-10480
  • Klenke, C., Widera, D., Engelen, T., Müller, J., Noll, T., Niehaus, K., Schmitz, M.L., Kaltschmidt, C., Hsc70 is a novel interactor of NF-κB p65 in living hippocampal neurons (2013) PLoS ONE, 8, p. e65280
  • Yura, S., Sagawa, N., Ogawa, Y., Masuzaki, H., Mise, H., Matsumoto, T., Ebihara, K., Nakao, K., Augmentation of leptin synthesis and secretion through activation of protein kinases A and C in cultured human trophoblastic cells (1998) J. Clin. Endocrinol. Metab., 83, pp. 3609-3614
  • Suh, J., Rabson, A.B., NF-κB activation in human prostate cancer: Important mediator or epiphenomenon? (2004) J. Cell. Biochem., 91, pp. 100-117
  • Nissinen, L., Kähäri, V.M., Matrix metalloproteinases in inflammation (2014) Biochim. Biophys. Acta, 1840, pp. 2571-2580
  • Li, Y.F., Xu, X.B., Chen, X.H., Wei, G., He, B., Wang, J.D., The nuclear factor-κB pathway is involved in matrix metalloproteinase-9 expression in RU486-induced endometrium breakdown in mice (2012) Hum. Reprod., 27, pp. 2096-2106
  • Tsukihara, S., Harada, T., Deura, I., Mitsunari, M., Yoshida, S., Iwabe, T., Terakawa, N., Interleukin-1β-induced expression of IL-6 and production of human chorionic gonadotropin in human trophoblast cells via nuclear factor-κB activation (2004) Am. J. Reprod. Immunol., 52, pp. 218-223
  • Fujisawa, K., Nasu, K., Arima, K., Sugano, T., Narahara, H., Miyakawa, I., Production of interleukin (IL)-6 and IL-8 by a choriocarcinoma cell line, BeWo (2000) Placenta, 21, pp. 354-360
  • Riggs, D.L., Cox, M.B., Cheung-Flynn, J., Prapapanich, V., Carrigan, P.E., Smith, D.F., Functional specificity of co-Chaperone interactions with Hsp90 client proteins (2004) Crit. Rev. Biochem. Mol. Biol., 39, pp. 279-295
  • Scheinman, R.I., Gualberto, A., Jewell, C.M., Cidlowski, J.A., Baldwin, A.S., Jr., Characterization of mechanisms involved in transrepression of NF-κB by activated glucocorticoid receptors (1995) Mol. Cell. Biol., 15, pp. 943-953
  • Erlejman, A.G., Lagadari, M., Toneatto, J., Piwien-Pilipuk, G., Galigniana, M.D., Regulatory role of the 90-kDa heat-Shock protein (Hsp90) and associated factors on gene expression (2014) Biochim. Biophys. Acta, 1839, pp. 71-87
  • Cluning, C., Ward, B.K., Rea, S.L., Arulpragasam, A., Fuller, P.J., Ratajczak, T., The helix 1-3 loop in the glucocorticoid receptor LBD is a regulatory element for FKBP cochaperones (2013) Mol. Endocrinol., 27, pp. 1020-1035
  • Dokladny, K., Lobb, R., Wharton, W., Ma, T.Y., Moseley, P.L., LPS-induced cytokine levels are repressed by elevated expression of HSP70 in rats: Possible role of NF-κB (2010) Cell Stress Chaperones, 15, pp. 153-163
  • Sil, A.K., Maeda, S., Sano, Y., Roop, D.R., Karin, M., IκB kinase-α acts in the epidermis to control skeletal and craniofacial morphogenesis (2004) Nature, 428, pp. 660-664
  • Lawrence, T., Bebien, M., Liu, G.Y., Nizet, V., Karin, M., IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation (2005) Nature, 434, pp. 1138-1143
  • Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P.O., Bergamini, G., Croughton, K., Cruciat, C., Superti-Furga, G., A physical and functional map of the human TNF-α/NF-κ B signal transduction pathway (2004) Nat. Cell Biol., 6, pp. 97-105
  • Hinz, M., Broemer, M., Arslan, S.C., Otto, A., Mueller, E.C., Dettmer, R., Scheidereit, C., Signal responsiveness of IκB kinases is determined by Cdc37-assisted transient interaction with Hsp90 (2007) J. Biol. Chem., 282, pp. 32311-32319
  • Romano, S., Staibano, S., Greco, A., Brunetti, A., Nappo, G., Ilardi, G., Martinelli, R., Romano, M.F., FK506 binding protein 51 positively regulates melanoma stemness and metastatic potential (2013) Cell Death Dis., 4, p. e578
  • Park, K.J., Krishnan, V., O'Malley, B.W., Yamamoto, Y., Gaynor, R.B., Formation of an IKKα-Dependent transcription complex is required for estrogen receptor-Mediated gene activation (2005) Mol. Cell, 18, pp. 71-82
  • Park, G.Y., Wang, X., Hu, N., Pedchenko, T.V., Blackwell, T.S., Christman, J.W., NIK is involved in nucleosomal regulation by enhancing histone H3 phosphorylation by IKKα (2006) J. Biol. Chem., 281, pp. 18684-18690
  • Raghuram, N., Strickfaden, H., McDonald, D., Williams, K., Fang, H., Mizzen, C., Hayes, J.J., Hendzel, M.J., Pin1 promotes histone H1 dephosphorylation and stabilizes its binding to chromatin (2013) J. Cell Biol., 203, pp. 57-71
  • Ryo, A., Suizu, F., Yoshida, Y., Perrem, K., Liou, Y.C., Wulf, G., Rottapel, R., Lu, K.P., Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA (2003) Mol. Cell, 12, pp. 1413-1426
  • Pang, R.W., Lee, T.K., Man, K., Poon, R.T., Fan, S.T., Kwong, Y.L., Tse, E., PIN1 expression contributes to hepatic carcinogenesis (2006) J. Pathol., 210, pp. 19-25
  • Lu, K.P., Liou, Y.C., Zhou, X.Z., Pinning down proline-directed phosphorylation signaling (2002) Trends Cell Biol., 12, pp. 164-172
  • Wulf, G.M., Ryo, A., Wulf, G.G., Lee, S.W., Niu, T., Petkova, V., Lu, K.P., Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1 (2001) EMBO J., 20, pp. 3459-3472
  • Oshimo, Y., Kuraoka, K., Nakayama, H., Kitadai, Y., Yoshida, K., Chayama, K., Yasui, W., Epigenetic inactivation of SOCS-1 by CpG island hypermethylation in human gastric carcinoma (2004) Int. J. Cancer, 112, pp. 1003-1009
  • Oh, J., Kim, S.H., Ahn, S., Lee, C.E., Suppressors of cytokine signaling promote Fas-induced apoptosis through down-regulation of NF-κB and mitochondrial Bfl-1 in leukemic T cells (2012) J. Immunol., 189, pp. 5561-5571
  • Zhao, X.D., Zhang, W., Liang, H.J., Ji, W.Y., Overexpression of miR -155 promotes proliferation and invasion of human laryngeal squamous cell carcinoma via targeting SOCS1 and STAT3 (2013) PLoS ONE, 8, p. e56395
  • Schif, B., Lennerz, J.K., Kohler, C.W., Bentink, S., Kreuz, M., Melzner, I., Ritz, O., Möller, P., SOCS1 mutation subtypes predict divergent outcomes in diffuse large B-Cell lymphoma (DLBCL) patients (2013) Oncotarget, 4, pp. 35-47
  • Fuchs, O., Transcription factor NF-κB inhibitors as single therapeutic agents or in combination with classical chemotherapeutic agents for the treatment of hematologic malignancies (2010) Curr. Mol. Pharmacol., 3, pp. 98-122
  • Fabre, C., Mimura, N., Bobb, K., Kong, S.Y., Gorgun, G., Cirstea, D., Hu, Y., Anderson, K.C., Dual inhibition of canonical and noncanonical NF-κB pathways demonstrates significant antitumor activities in multiple myeloma (2012) Clin. Cancer Res., 18, pp. 4669-4681
  • Salem, K., Brown, C.O., Schibler, J., Goel, A., Combination chemotherapy increases cytotoxicity of multiple myeloma cells by modification of nuclear factor (NF)-κB activity (2013) Exp. Hematol., 41, pp. 209-218
  • Romano, M.F., Avellino, R., Petrella, A., Bisogni, R., Romano, S., Venuta, S., Rapamycin inhibits doxorubicin-Induced NF-κB/Rel nuclear activity and enhances the apoptosis of melanoma cells (2004) Eur. J. Cancer, 40, pp. 2829-2836
  • Yeh, W.C., Bierer, B.E., McKnight, S.L., Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells (1995) Proc. Natl. Acad. Sci. U.S.A., 92, pp. 11086-11090
  • Sinars, C.R., Cheung-Flynn, J., Rimerman, R.A., Scammell, J.G., Smith, D.F., Clardy, J., Structure of the large FK506-binding protein FKBP51, an Hsp90 binding protein, and a component of steroid receptor complexes (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 868-873
  • Galat, A., Peptidylproline cis-trans-isomerases: Immunophilins (1993) Eur. J. Biochem., 216, pp. 689-707
  • Peattie, D.A., Harding, M.W., Fleming, M.A., Decenzo, M.T., Lippke, J.A., Livingston, D.J., Benasutti, M., Expression and characterization of human FKBP52, an immunophilin that associates with the 90-kDa heat shock protein and is a component of steroid receptor complexes (1992) Proc. Natl. Acad. Sci. U.S.A., 89, pp. 10974-10978
  • Gaali, S., Gopalakrishnan, R., Wang, Y., Kozany, C., Hausch, F., The chemical biology of immunophilin ligands (2011) Curr. Med. Chem., 18, pp. 5355-5379


---------- APA ----------
Erlejman, A.G., De Leo, S.A., Mazaira, G.I., Molinari, A.M., Camisay, M.F., Fontana, V., Cox, M.B.,..., Galigniana, M.D. (2014) . NF-κB transcriptional activity is modulated by FK506-Binding proteins FKBP51 and FKBP52:A role for peptidyl-prolyl isomerase activity. Journal of Biological Chemistry, 289(38), 26263-26276.
---------- CHICAGO ----------
Erlejman, A.G., De Leo, S.A., Mazaira, G.I., Molinari, A.M., Camisay, M.F., Fontana, V., et al. "NF-κB transcriptional activity is modulated by FK506-Binding proteins FKBP51 and FKBP52:A role for peptidyl-prolyl isomerase activity" . Journal of Biological Chemistry 289, no. 38 (2014) : 26263-26276.
---------- MLA ----------
Erlejman, A.G., De Leo, S.A., Mazaira, G.I., Molinari, A.M., Camisay, M.F., Fontana, V., et al. "NF-κB transcriptional activity is modulated by FK506-Binding proteins FKBP51 and FKBP52:A role for peptidyl-prolyl isomerase activity" . Journal of Biological Chemistry, vol. 289, no. 38, 2014, pp. 26263-26276.
---------- VANCOUVER ----------
Erlejman, A.G., De Leo, S.A., Mazaira, G.I., Molinari, A.M., Camisay, M.F., Fontana, V., et al. NF-κB transcriptional activity is modulated by FK506-Binding proteins FKBP51 and FKBP52:A role for peptidyl-prolyl isomerase activity. J. Biol. Chem. 2014;289(38):26263-26276.