Artículo

Singh, S.; Thakur, N.; Oliveira, A.; Petruk, A.A.; Hade, M.D.; Sethi, D.; Bidon-Chanal, A.; Martí, M.A.; Datta, H.; Parkesh, R.; Estrin, D.A.; Luque, F.J.; Dikshit, K.L. "Mechanistic insight into the enzymatic reduction of truncated hemoglobin N of Mycobacterium tuberculosis: Role of the CD loop and Pre-A motif in electron cycling" (2014) Journal of Biological Chemistry. 289(31):21573-21583
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Many pathogenic microorganisms have evolved hemoglobin-mediated nitric oxide (NO) detoxification mechanisms, where a globin domain in conjunction with a partner reductase catalyzes the conversion of toxic NO to innocuous nitrate. The truncated hemoglobin HbN of Mycobacterium tuberculosis displays a potent NO dioxygenase activity despite lacking a reductase domain. The mechanism by which HbN recycles itself during NO dioxygenation and the reductase that participates in this process are currently unknown. This study demonstrates that the NADH-ferredoxin/flavodoxin system is a fairly efficient partner for electron transfer to HbN with an observed reduction rate of 6.2 μ-M/min -1 , which is nearly 3- and 5-fold faster than reported for Vitreoscilla hemoglobin and myoglobin, respectively. Structural docking of the HbN with Escherichia coli NADH-flavodoxin reductase (FdR) together with site-directed mutagenesis revealed that the CD loop of the HbN forms contacts with the reductase, and that Gly 48 may have a vital role. The donor to acceptor electron coupling parameters calculated using the semiempirical pathway method amounts to an average of about 6.4 10 -5 eV, which is lower than the value obtained for E. coli flavoHb (8.0 10 -4 eV), but still supports the feasibility of an efficient electron transfer. The deletion of Pre-A abrogated the heme iron reduction by FdR in the HbN, thus signifying its involvement during intermolecular interactions of the HbN and FdR. The present study, thus, unravels a novel role of the CD loop and Pre-A motif in assisting the interactions of the HbN with the reductase and the electron cycling, which may be vital for its NO-scavenging function. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

Registro:

Documento: Artículo
Título:Mechanistic insight into the enzymatic reduction of truncated hemoglobin N of Mycobacterium tuberculosis: Role of the CD loop and Pre-A motif in electron cycling
Autor:Singh, S.; Thakur, N.; Oliveira, A.; Petruk, A.A.; Hade, M.D.; Sethi, D.; Bidon-Chanal, A.; Martí, M.A.; Datta, H.; Parkesh, R.; Estrin, D.A.; Luque, F.J.; Dikshit, K.L.
Filiación:CSIR (Council of Scientific and Industrial Research), Institute of Microbial Technology, Chandigarh 160036, India
Department de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
Palabras clave:Detoxification; Electron transitions; Enzyme activity; Escherichia coli; Hemoglobin; Nitric oxide; Detoxification mechanism; Enzymatic reduction; Intermolecular interactions; Mycobacterium tuberculosis; Pathogenic microorganisms; Site directed mutagenesis; Truncated hemoglobins; Vitreoscilla hemoglobin; Reduction; ferredoxin; flavodoxin; glycine; heme; hemoglobin n; hemoglobin variant; iron; myoglobin; reduced nicotinamide adenine dinucleotide; truncated hemoglobin; unclassified drug; hemoglobin variant; hemoglobins N; primer DNA; article; catalysis; controlled study; electron transport; Escherichia coli; molecular docking; Mycobacterium tuberculosis; nonhuman; priority journal; protein motif; protein protein interaction; site directed mutagenesis; Vitreoscilla; chemistry; electron; electron transport; enzymology; genetics; metabolism; molecular dynamics; Mycobacterium tuberculosis; nucleotide sequence; oxidation reduction reaction; polymerase chain reaction; Base Sequence; DNA Primers; Electron Transport; Electrons; Hemoglobins, Abnormal; Molecular Dynamics Simulation; Mutagenesis, Site-Directed; Mycobacterium tuberculosis; Oxidation-Reduction; Polymerase Chain Reaction
Año:2014
Volumen:289
Número:31
Página de inicio:21573
Página de fin:21583
DOI: http://dx.doi.org/10.1074/jbc.M114.578187
Título revista:Journal of Biological Chemistry
Título revista abreviado:J. Biol. Chem.
ISSN:00219258
CODEN:JBCHA
CAS:ferredoxin, 9040-09-9; glycine, 56-40-6, 6000-43-7, 6000-44-8; heme, 14875-96-8; iron, 14093-02-8, 53858-86-9, 7439-89-6; reduced nicotinamide adenine dinucleotide, 58-68-4; DNA Primers; hemoglobins N; Hemoglobins, Abnormal
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219258_v289_n31_p21573_Singh

Referencias:

  • Gardner, P.R., Nitric-oxide dioxygenase function and mechanism of flavohemoglobin, haemoglobin and myoglobin and their associated reductases (2005) J. Inorg. Biochem., 99, pp. 247-266
  • Forrester, M.T., Foster, M.W., Protection from nitrosative stress: A central role for microbial flavohemoglobin (2012) Free Radic. Biol. Med., 52, pp. 1620-1633
  • Gardner, P.R., Gardner, A.M., Brashear, W.T., Suzuki, T., Hvitved, A.N., Setchell, K.D., Olson, J.S., Hemoglobins deoxygenate nitric oxide with high fidelity (2006) J. Inorg. Biochem., 100, pp. 542-550
  • Pathania, R., Navani, N.K., Gardner, A.M., Gardner, P.R., Dikshit, K.L., Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli (2002) Molecular Microbiology, 45 (5), pp. 1303-1314. , DOI 10.1046/j.1365-2958.2002.03095.x
  • Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., Guertin, M., Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (9), pp. 5902-5907. , DOI 10.1073/pnas.092017799
  • Pawaria, S., Rajamohan, G., Gambhir, V., Lama, A., Varshney, G.C., Dikshit, K.L., Intracellular growth and survival of Salmonella enterica serovar Typhimurium carrying truncated hemoglobins of Mycobacterium tuberculosis (2007) Microbial Pathogenesis, 42 (4), pp. 119-128. , DOI 10.1016/j.micpath.2006.12.001, PII S0882401006001641
  • Yeh, S.R., Couture, M., Ouellet, Y., Guertin, M., Rousseau, D.L., A cooperative oxygen binding hemoglobin from Mycobacterium tuberculosis (2000) J. Biol. Chem., 275, pp. 1679-1684
  • Lama, A., Pawaria, S., Bidon-Chanal, A., Anand, A., Gelpí, J.L., Arya, S., Martí, M., Dikshit, K.L., Role of Pre-A motif in nitric oxide scavenging by truncated hemoglobin, HbN, of Mycobacterium tuberculosis (2009) J. Biol. Chem., 284, pp. 14457-14468
  • Milani, M., Pesce, A., Ouellet, Y., Ascenzi, P., Guertin, M., Bolognesi, M., Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O 2 diffusion to the heme (2001) EMBO Journal, 20 (15), pp. 3902-3909. , DOI 10.1093/emboj/20.15.3902
  • Bidon-Chanal, A., Marti, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A., Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N (2006) Proteins: Structure, Function and Genetics, 64 (2), pp. 457-464. , DOI 10.1002/prot.21004
  • Bidon-Chanal, A., Marti, M.A., Estrin, D.A., Luque, F.J., Dynamical regulation of ligand migration by a gate-opening molecular switch in truncated hemoglobin-N from Mycobacterium tuberculosis (2007) Journal of the American Chemical Society, 129 (21), pp. 6782-6788. , DOI 10.1021/ja0689987
  • Oliveira, A., Singh, S., Bidon-Chanal, A., Forti, F., Martí, M.A., Boechi, L., Estrin, D.A., Luque, F.J., Role of Phe(E15) gate in ligand entry and nitric oxide detoxification function of Mycobacterium tuberculosis truncated hemoglobin N (2012) PLoS One, 7, pp. e49291
  • Smagghe, B.J., Trent III, J.T., Hargrove, M.S., NO dioxygenase activity in hemoglobins is ubiquitous in vitro, but limited by reduction in vivo (2008) PLoS One, 3, pp. e2039
  • Gardner, A.M., Martin, L.A., Gardner, P.R., Dou, Y., Olson, J.S., Steady-state and transient kinetics of Escherichia coli nitric-oxide dioxygenase (flavohemoglobin). The B10 tyrosine hydroxyl is essential for dioxygen binding and catalysis (2000) Journal of Biological Chemistry, 275 (17), pp. 12581-12589. , DOI 10.1074/jbc.275.17.12581
  • Gardner, P.R., Gardner, A.M., Martin, L.A., Dou, Y., Li, T., Olson, J.S., Zhu, H., Riggs, A.F., Nitric-oxide dioxygenase actity and function of flavohemoglobins (2000) J. Biol. Chem., 275, pp. 31581-31587
  • Eich, R.F., Li, T., Lemon, D.D., Doherty, D.H., Curry, S.R., Aitken, J.F., Mathews, A.J., Olson, J.S., Mechanism of NO-induced oxidation of myoglobin and hemoglobin (1996) Biochemistry, 35 (22), pp. 6976-6983. , DOI 10.1021/bi960442g
  • Fago, A., Mathews, A.J., Moens, L., Dewilde, S., Brittain, T., The reaction of neuroglobin with potential redox protein partners cytochrome b 5 and cytochrome c (2006) FEBS Letters, 580 (20), pp. 4884-4888. , DOI 10.1016/j.febslet.2006.08.003, PII S0014579306009598
  • Hayashi, A., Suzuki, T., Shin, M., An enzymic reduction system for metmyoglobin and methemoglobin and its application to functional studies of oxygen carriers (1973) Biochim. Biophys. Acta, 310, pp. 309-316
  • Dikshit, K.L., Webster, D.A., Cloning, expression and characterization of bacterial globin gene from Vitreoscilla in Escherichia coli (1988) Gene, 70, pp. 377-386
  • Doyle, M.P., Hoekstra, J.W., Oxidation of nitrogen oxides by bound dioxygen in hemoproteins (1981) Journal of Inorganic Biochemistry, 14 (4), pp. 351-358. , DOI 10.1016/S0162-0134(00)80291-3
  • Arya, S., Sethi, D., Singh, S., Hade, M.D., Singh, V., Raju, P., Chodisetti, S.B., Dikshit, K.L., Truncated hemoglobin N is post-translationally modified in Mycobacterium tuberculosis and modulates host-pathogen interactions during intracellular infection (2013) J. Biol. Chem., 288, pp. 29987-29999
  • Appleby, C.A., Purification of Rhizobium cytochromes P-450 (1978) Methods Enzymol., 52, pp. 157-166
  • Thomas, M.T., Shepherd, M., Poole, R.K., Van Vliet, A.H., Kelly, D.J., Pearson, B.M., Two respiratory enzyme systems in Campylobacter jejuni NCTC 11168 contributes to growth on L-lactate (2011) Environ. Microbiol., 13, pp. 48-61
  • Ingelman, M., Bianchi, V., Eklund, H., The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 Å resolution (1997) Journal of Molecular Biology, 268 (1), pp. 147-157. , DOI 10.1006/jmbi.1997.0957
  • Kozakov, D., Hall, D.R., Beglov, D., Brenke, R., Comeau, S.R., Shen, Y., Li, K., Vajda, S., Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13-19 (2010) Proteins, 78, pp. 3124-3130
  • Kozakov, D., Brenke, R., Comeau, S.R., Vajda, S., PIPER: An FFT-based protein docking program with pairwise potentials (2006) Proteins: Structure, Function and Genetics, 65 (2), pp. 392-406. , DOI 10.1002/prot.21117
  • Case, D.A., Darden, T.A., Cheatham III, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Kollman, P.A., (2012) AMBER 12, , University of California, San Francisco, CA
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple amber force fields and development of improved protein backbone parameters (2006) Proteins: Structure, Function and Genetics, 65 (3), pp. 712-725. , DOI 10.1002/prot.21123
  • Capece, L., Boechi, L., Perissinotti, L.L., Arroyo-Mañez, P., Bikiel, D.E., Smulevich, G., Marti, M.A., Estrin, D.A., Small ligand-globin interactions: Reviewing lessons derived from computer simulation (2013) Biochim. Biophys. Acta, 1834, pp. 1722-1738
  • Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., Estrin, D.A., NO reactivity with globins as investigated through computer simulation (2008) Methods Enzymol., 437, pp. 477-498
  • Antony, J., Medvedev, D.M., Stuchebrukhov, A.A., Theoretical study of electron transfer between the photolyase catalytic cofactor FADH- and DNA thymine dimer (2000) Journal of the American Chemical Society, 122 (6), pp. 1057-1065. , DOI 10.1021/ja993784t
  • Bayly, C.I., Cieplak, P., Cornell, W., Kollman, P.A., A wellbehaved electrostatic potential based method using charge restraints for determining atom-centered charges: The RESP model (1993) J. Phys. Chem., 97, pp. 10269-10280
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935
  • Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes (1977) J. Comput. Phys., 23, pp. 327-341
  • Wu, X., Brooks, B.R., Self-guided Langevin dynamics simulation method (2003) Chem. Phys. Lett., 381, pp. 512-518
  • Darden, T., York, D., Pedersen, L., Particle mesh Ewald: An N. Log(N) method for Ewald sums in large systems (1993) J. Chem. Phys., 98, pp. 10089-10092
  • Beratan, D.N., Onuchic, J.N., Winkler, J.R., Gray, H.B., Electron-tunneling pathways in proteins (1992) Science, 258 (5089), pp. 1740-1741
  • Beratan, D.N., Betts, J.N., Onuchic, J.N., Protein electron transfer rates set by the bridging secondary and tertiary structure (1991) Science, 252 (5010), pp. 1285-1288
  • Alvarez-Paggi, D., Martín, D.F., DeBiase, P.M., Hildebrandt, P., Martí, M.A., Murgida, D.H., Molecular basis of coupled protein and electron transfer dynamics of cytocrome c in biomimetic complexes (2010) J. Am. Chem. Soc., 132, pp. 5769-5778
  • Petruk, A.A., Bartesaghi, S., Trujillo, M., Estrin, D.A., Murgida, D., Kalyanaraman, B., Marti, M.A., Radi, R., Molecular basis of intermolecular electron transfer in proteins during simulation studies in model tyrosine-cysteine peptides in solution (2012) Arch. Biochem. Biophys., 525, pp. 82-91
  • Ferreiro, D.N., Boechi, L., Estrin, D.A., Martí, M.A., The key role of water in the dioxygenase function of Escherichia coli flavohemoglobin (2013) J. Inorg. Biochem., 119, pp. 75-84
  • Kohlhoff, M., Borges, M.H., Yarleque, A., Cabezas, C., Richardson, M., Sanchez, E.F., Exploring the proteome of the venome of the peruvian pit vipers Bothrops atrox, B. Barnetti, and B. pictus (2012) J. Proteomics, 75, pp. 2181-2195
  • Nagai, M., Tomoda, A., Yoneyama, Y., Reduction of methemoglobin by ferredoxin and ferredoxin-NADP reductase system (1981) Journal of Biological Chemistry, 256 (17), pp. 9195-9197
  • Frey, A.D., Kallio, P.T., Nitric oxide detoxification - A new era for bacterial globins in biotechnology? (2005) Trends in Biotechnology, 23 (2), pp. 69-73. , DOI 10.1016/j.tibtech.2004.12.002, PII S0167779904003300
  • Hallstrom, C.K., Gardner, A.M., Gardner, P.R., Nitric oxide metabolism in mammalian cells: Substrate and inhibitor profiles of a NADPH-cytochrome P450 oxidoreductase-coupled microsomal nitric oxide dioxygenase (2004) Free Radical Biology and Medicine, 37 (2), pp. 216-228. , DOI 10.1016/j.freeradbiomed.2004.04.031, PII S0891584904003521
  • Jasaitis, A., Johansson, M.P., Wikstrom, M., Vos, M.H., Vekhovsky, I., Nanosecond electron tunnelling between the hemes in cytochrome bo 3 (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 20811-20814
  • Beratan, D.N., Balabin, I.A., Heme-copper oxidases use tunneling pathways (2008) Proceedings of the National Academy of Sciences of the United States of America, 105 (2), pp. 403-404. , http://www.pnas.org/cgi/reprint/105/2/403, DOI 10.1073/pnas.0711343105

Citas:

---------- APA ----------
Singh, S., Thakur, N., Oliveira, A., Petruk, A.A., Hade, M.D., Sethi, D., Bidon-Chanal, A.,..., Dikshit, K.L. (2014) . Mechanistic insight into the enzymatic reduction of truncated hemoglobin N of Mycobacterium tuberculosis: Role of the CD loop and Pre-A motif in electron cycling. Journal of Biological Chemistry, 289(31), 21573-21583.
http://dx.doi.org/10.1074/jbc.M114.578187
---------- CHICAGO ----------
Singh, S., Thakur, N., Oliveira, A., Petruk, A.A., Hade, M.D., Sethi, D., et al. "Mechanistic insight into the enzymatic reduction of truncated hemoglobin N of Mycobacterium tuberculosis: Role of the CD loop and Pre-A motif in electron cycling" . Journal of Biological Chemistry 289, no. 31 (2014) : 21573-21583.
http://dx.doi.org/10.1074/jbc.M114.578187
---------- MLA ----------
Singh, S., Thakur, N., Oliveira, A., Petruk, A.A., Hade, M.D., Sethi, D., et al. "Mechanistic insight into the enzymatic reduction of truncated hemoglobin N of Mycobacterium tuberculosis: Role of the CD loop and Pre-A motif in electron cycling" . Journal of Biological Chemistry, vol. 289, no. 31, 2014, pp. 21573-21583.
http://dx.doi.org/10.1074/jbc.M114.578187
---------- VANCOUVER ----------
Singh, S., Thakur, N., Oliveira, A., Petruk, A.A., Hade, M.D., Sethi, D., et al. Mechanistic insight into the enzymatic reduction of truncated hemoglobin N of Mycobacterium tuberculosis: Role of the CD loop and Pre-A motif in electron cycling. J. Biol. Chem. 2014;289(31):21573-21583.
http://dx.doi.org/10.1074/jbc.M114.578187