Artículo

Martinez, A.; Peluffo, G.; Petruk, A.A.; Hugo, M.; Piñeyro, D.; Demicheli, V.; Moreno, D.M.; Lima, A.; Batthyány, C.; Durán, R.; Robello, C.; Martí, M.A.; Larrieux, N.; Buschiazzo, A.; Trujillo, M.; Radi, R.; Piacenza, L. "Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of trypanosoma cruzi iron-superoxide dismutases (fe-sods) a and b : Disparate susceptibilities due to the repair of tyr35 radical by cys83 in fe-sodb through intramolecular electron transfer" (2014) Journal of Biological Chemistry. 289(18):12760-12778
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background: Superoxide dismutases are inactivated by peroxynitrite. Results: T. cruzi cytosolic Fe-SODB is highly resistant toward peroxynitrite-mediated tyrosine nitration and inactivation as compared with mitochondrial Fe-SODA. Conclusion: Intramolecular electron transfer in Fe-SODB from Cys83 to critical Tyr35 prevents enzyme nitration and inactivation. Significance: Disparate susceptibilities of Fe-SODs to peroxynitrite can influence parasite virulence during T. cruzi infection of mammalian cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

Registro:

Documento: Artículo
Título:Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of trypanosoma cruzi iron-superoxide dismutases (fe-sods) a and b : Disparate susceptibilities due to the repair of tyr35 radical by cys83 in fe-sodb through intramolecular electron transfer
Autor:Martinez, A.; Peluffo, G.; Petruk, A.A.; Hugo, M.; Piñeyro, D.; Demicheli, V.; Moreno, D.M.; Lima, A.; Batthyány, C.; Durán, R.; Robello, C.; Martí, M.A.; Larrieux, N.; Buschiazzo, A.; Trujillo, M.; Radi, R.; Piacenza, L.
Filiación:Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
Unit of Molecular Biology, Uruguay
Unit of Protein Crystallography, Uruguay
Unit of Analytical Biochemistry and Proteomics, Institut Pasteur de Montevideo/IIBCE, Mataojo 2020, Montevideo 11400, Uruguay
Institut Pasteur, Department of Structural Biology and Chemistry, 25 rue du Dr. Roux, Paris 75015, France
Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica Universidad de Buenos Aires, Pab 2 Ciudad Universitaria, Buenos Aires, Argentina
Instituto de Química del Noroeste Argentino, CONICET-UNT, Ayacucho 471, S.M. de Tucumán, Tucumán T4000, Argentina
Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina
Palabras clave:Amino acids; Electron transitions; Nitration; Oxygen; Repair; Cytosolic; Intra-molecular electron transfer; Mammalian cells; Molecular basis; Peroxynitrites; Superoxide dismutases; Trypanosoma cruzi; Tyrosine nitration; Free radical reactions; cysteine; iron superoxide dismutase; isoenzyme; mitochondrial enzyme; peroxynitrite; tryptophan; tyrosine; alkylation; article; controlled study; crystal structure; cytosol; electron transport; enzyme active site; enzyme analysis; enzyme inactivation; enzyme structure; mass spectrometry; molecular biology; mutation; nitration; nonhuman; priority journal; structure analysis; Trypanosoma cruzi; Free Radicals; Nitration; Nitric Oxide; Oxidation-Reduction; Peroxynitrite; Superoxide; Superoxide Dismutase (SOD); Trypanosoma cruzi; Trypanosome; Animals; Binding Sites; Blotting, Western; Catalytic Domain; Chagas Disease; Crystallography, X-Ray; Cysteine; Electron Spin Resonance Spectroscopy; Electron Transport; Enzyme Activation; Host-Parasite Interactions; Isoenzymes; Kinetics; Models, Molecular; Molecular Dynamics Simulation; Mutagenesis, Site-Directed; Nitrates; Peroxynitrous Acid; Protein Binding; Protein Structure, Secondary; Protozoan Proteins; Reactive Oxygen Species; Superoxide Dismutase; Trypanosoma cruzi; Tyrosine
Año:2014
Volumen:289
Número:18
Página de inicio:12760
Página de fin:12778
DOI: http://dx.doi.org/10.1074/jbc.M113.545590
Título revista:Journal of Biological Chemistry
Título revista abreviado:J. Biol. Chem.
ISSN:00219258
CODEN:JBCHA
CAS:cysteine, 4371-52-2, 52-89-1, 52-90-4; tryptophan, 6912-86-3, 73-22-3; tyrosine, 16870-43-2, 55520-40-6, 60-18-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219258_v289_n18_p12760_Martinez

Referencias:

  • Fridovich, I., Superoxide radical and superoxide dismutases (1995) Annu. Rev. Biochem., 64, pp. 97-112
  • Stallings, W.C., Pattridge, K.A., Strong, R.K., Ludwig, M.L., Manganese and iron superoxide dismutases are structural homologs (1984) J. Biol. Chem., 259, pp. 10695-10699
  • Ismail, S.O., Paramchuk, W., Skeiky, Y.A., Reed, S.G., Bhatia, A., Gedamu, L., Molecular cloning and characterization of two iron superoxide dismutase cdnas from trypanosoma cruzi (1997) Mol. Biochem. Parasitol., 86, pp. 187-197
  • Temperton, N.J., Wilkinson, S.R., Kelly, J.M., Cloning of an fe-superoxide dismutase gene homologue from trypanosoma cruzi (1996) Mol. Biochem. Parasitol., 76, pp. 339-343
  • Urbina, J.A., Specific chemotherapy of chagas disease: Relevance, current limitations and new approaches (2010) Acta Trop., 115, pp. 55-68
  • Lepesheva, G.I., Villalta, F., Waterman, M.R., Targeting trypanosoma cruzi sterol 14-demethylase (cyp51 (2011) Adv. Parasitol., 75, pp. 65-87
  • Piacenza, L., Zago, M.P., Peluffo, G., Alvarez, M.N., Basombrio, M.A., Radi, R., Enzymes of the antioxidant network as novel determiners of trypanosoma cruzi virulence (2009) Int. J. Parasitol., 39, pp. 1455-1464
  • Kierszenbaum, F., Knecht, E., Budzko, D.B., Pizzimenti, M.C., Phagocytosis: A defense mechanism against infection with trypanosoma cruzi (1974) J. Immunol., 112, pp. 1839-1844
  • Munoz-Fernández, M.A., Fernández, M.A., Fresno, M., Synergism between tumor necrosis factor- and interferon- on macrophage activation for the killing of intracellular trypanosoma cruzi through a nitric oxide-dependent mechanism (1992) Eur. J. Immunol., 22, pp. 301-307
  • Alvarez, M.N., Peluffo, G., Piacenza, L., Radi, R., Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized trypanosoma cruzi: Consequences for oxidative killing and role of microbial peroxiredoxins in infectivity (2011) J. Biol. Chem., 286, pp. 6627-6640
  • Valez, V., Cassina, A., Batinic-Haberle, I., Kalyanaraman, B., Ferrer-Sueta, G., Radi, R., Peroxynitrite formation in nitric oxide-exposed submitochondrial particles: Detection, oxidative damage and catalytic removal by mn-porphyrins (2013) Arch. Biochem. Biophys., 529, pp. 45-54
  • Piacenza, L., Irigoín, F., Alvarez, M.N., Peluffo, G., Taylor, M.C., Kelly, J.M., Wilkinson, S.R., Radi, R., Mitochondrial superoxide radicals mediate programmed cell death in trypanosoma cruzi: Cytoprotective action of mitochondrial iron superoxide dismutase overexpression (2007) Biochem. J., 403, pp. 323-334
  • Demicheli, V., Quijano, C., Alvarez, B., Radi, R., Inactivation and nitration of human superoxide dismutase (sod) by fluxes of nitric oxide and superoxide (2007) Free Radic. Biol. Med., 42, pp. 1359-1368
  • MacMillan-Crow, L., Crow, J., Kerby, J., Beckman, J., Thompson, J., Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 11853-11858
  • Radi, R., Rodriguez, M., Castro, L., Telleri, R., Inhibition of mitochondrial electron transport by peroxynitrite (1994) Arch. Biochem. Biophys., 308, pp. 89-95
  • Ghafourifar, P., Schenk, U., Klein, S.D., Richter, C., Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation (1999) J. Biol. Chem., 274, pp. 31185-31188
  • Yamakura, F., Taka, H., Fujimura, T., Murayama, K., Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine (1998) J. Biol. Chem., 273, pp. 14085-14089
  • Quijano, C., Hernandez-Saavedra, D., Castro, L., McCord, J.M., Freeman, B., Radi, R., Reaction of peroxynitrite with mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration (2001) J. Biol. Chem., 276, pp. 11631-11638
  • Surmeli, N.B., Litterman, N.K., Miller, A.F., Groves, J.T., Peroxynitrite mediates active site tyrosine nitration in manganese superoxide dismutase: Evidence of a role for the carbonate radical anion (2010) J. Am. Chem. Soc., 132, pp. 17174-17185
  • Moreno, D.M., Martí, M.A., De Biase, P.M., Estrin, D.A., Demicheli, V., Radi, R., Boechi, L., Exploring the molecular basis of human manganese superoxide dismutase inactivation mediated by tyrosine 34 nitration (2011) Arch. Biochem. Biophys., 507, pp. 304-309
  • Radi, R., Protein tyrosine nitration: Biochemical mechanisms and structural basis of functional effects (2013) Acc. Chem. Res., 46, pp. 550-559
  • Radi, R., Beckman, J.S., Bush, K.M., Freeman, B., Peroxynitrite- induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide (1991) Arch. Biochem. Biophys., 288, pp. 481-487
  • Hughes, M.N., Nicklin, H.G., A possible role for the species peroxonitrite in nitrification (1970) Biochim. Biophys. Acta, 222, pp. 660-661
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
  • Crow, J.P., Sampson, J.B., Zhuang, Y., Thompson, J.A., Beckman, J.S., Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite (1997) J. Neurochem., 69, pp. 1936-1944
  • McCord, J.M., Fridovich, I., Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein (1969) J. Biol. Chem., 244, pp. 6049-6055
  • Peskin, A.V., Winterbourn, C.C., Taurine chloramine is more selective than hypochlorous acid at targeting critical cysteines and inactivating creatine kinase and glyceraldehyde-3- phosphate dehydrogenase (2006) Free Radic. Biol. Med., 40, pp. 45-53
  • Alvarez, B., Ferrer-Sueta, G., Freeman, B., Radi, R., Kinetics of peroxynitrite reaction with amino acids and human serum albumin (1999) J. Biol. Chem., 274, pp. 842-848
  • Ellman, G.L., Tissue sulfhydryl groups (1959) Arch. Biochem. Biophys., 82, pp. 70-77
  • Trujillo, M., Budde, H., Pineyro, M.D., Stehr, M., Robello, C., Flohé, L., Radi, R., Trypanosoma brucei and trypanosoma cruzi tryparedoxin peroxidases catalytically detoxify peroxynitrite via oxidation of fast reacting thiols (2004) J. Biol. Chem., 279, pp. 34175-34182
  • Brito, C., Naviliat, M., Tiscornia, A.C., Vuillier, F., Gualco, G., Dighiero, G., Radi, R., Cayota, A.M., Peroxynitrite inhibits t lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death (1999) J. Immunol., 162, pp. 3356-3366
  • Peloso, E.F., Gonçalves, C.C., Silva, T.M., Ribeiro, L.H., Pineyro, M.D., Robello, C., Gadelha, F.R., Tryparedoxin peroxidases and superoxide dismutases expression as well as ros release are related to trypanosoma cruzi epimastigotes growth phases (2012) Arch. Biochem. Biophys., 520, pp. 117-122
  • Romero, N., Radi, R., Linares, E., Augusto, O., Detweiler, C.D., Mason, R.P., Denicola, A., Reaction of human hemoglobin with peroxynitrite: Isomerization to nitrate and secondary formation of protein radicals (2003) J. Biol. Chem., 278, pp. 44049-44057
  • Hellman, U., Sample preparation by sds/page and in-gel digestion (2000) EXS, 88, pp. 43-54
  • Nicholls, S.J., Shen, Z., Fu, X., Levison, B.S., Hazen, S.L., Quantification of 3-nitrotyrosine levels using a benchtop ion trap mass spectrometry method (2005) Methods Enzymol., 396, pp. 245-266
  • Turko, I.V., Murad, F., Mapping sites of tyrosine nitration by matrix-assisted laser desorption/ionization mass spectrometry (2005) Methods Enzymol., 396, pp. 266-275
  • Leslie, A.G.W., Processing difraction data with mosflm (2007) Evolving Methods for Macromolecular Crystallography, pp. 41-51. , (Read, R. J., and Sussman, J. L., eds) Springer, New York
  • Evans, P., Scaling and assessment of data quality (2006) Acta Crystallogr.D Biol. Crystallogr., 62, pp. 72-82
  • Trapani, S., Navaza, J., Amore: Classical and modern (2008) Acta Crystallogr. D Biol. Crystallogr., 64, pp. 11-16
  • Vonrhein, C., Flensburg, C., Keller, P., Sharff, A., Smart, O., Paciorek, W., Womack, T., Bricogne, G., Data processing and analysis with the autoproc toolbox (2011) Acta Crystallogr. D Biol. Crystallogr., 67, pp. 293-302
  • Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of coot (2010) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 486-501
  • Chen, V.B., Arendall III, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, D.C., Molprobity: All-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 12-21
  • Cheatham III, T.E., Cieplak, P., Kollman, P.A., A modified version of the cornell et al. Force field with improved sugar pucker phases and helical repeat (1999) J. Biomol. Struct. Dyn., 16, pp. 845-862
  • Petruk, A.A., Bartesaghi, S., Trujillo, M., Estrin, D.A., Murgida, D., Kalyanaraman, B., Marti, M.A., Radi, R., Molecular basis of intramolecular electron transfer in proteins during radical-mediated oxidations: Computer simulation studies in model tyrosine-cysteine peptides in solution (2012) Arch. Biochem. Biophys., 525, pp. 82-91
  • Leach, A., (2001) Molecular Modelling: Principles and Applications, , Prentice Hall, New York
  • Case, D., Darden, T., Cheatham, T., Simmerling, C., Wang, J., Duke, R., Luo, R., Kollman, P.A., (2006) AMBER, 9. , University of California, San Francisco, California
  • Beratan, D.N., Betts, J.N., Onuchic, J.N., Protein electron transfer rates set by the bridging secondary and tertiary structure (1991) Science, 252, pp. 1285-1288
  • Beratan, D.N., Onuchic, J.N., Winkler, J.R., Gray, H.B., Electron- tunneling pathways in proteins (1992) Science, 258, pp. 1740-1741
  • Shih, C., Museth, A.K., Abrahamsson, M., Blanco-Rodriguez, A.M., Di Bilio, A.J., Sudhamsu, J., Crane, B.R., Gray, H.B., Tryptophanaccelerated electron flow through proteins (2008) Science, 320, pp. 1760-1762
  • Stubbe, J., Nocera, D.G., Yee, C.S., Chang, M.C., Radical initiation in the class i ribonucleotide reductase: Long-range proton-coupled electron transfer? (2003) Chem. Rev., 103, pp. 2167-2201
  • Alvarez-Paggi, D., Martín, D.F., DeBiase, P.M., Hildebrandt, P., Martí, M.A., Murgida, D.H., Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes (2010) J. Am. Chem. Soc., 132, pp. 5769-5778
  • Aubert, C., Mathis, P., Eker, A.P., Brettel, K., Intraprotein electron transfer between tyrosine and tryptophan in dna photolyase from anacystis nidulans (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 5423-5427
  • Ly, H.K., Marti, M.A., Martin, D.F., Alvarez-Paggi, D., Meister, W., Kranich, A., Weidinger, I.M., Murgida, D.H., Thermal fluctuations determine the electron-transfer rates of cytochrome c in electrostatic and covalent complexes (2010) Chemphyschem, 11, pp. 1225-1235
  • Li, H., Robertson, A.D., Jensen, J.H., Very fast empirical prediction and rationalization of protein pka values (2005) Proteins, 61, pp. 704-721
  • Bas, D.C., Rogers, D.M., Jensen, J.H., Very fast prediction and rationalization of pka values for protein-ligand complexes (2008) Proteins, 73, pp. 765-783
  • Olsson, M.H.M., Sondergaard, C.R., Rostkowski, M., Jensen, J.H., Propka3: Consistent treatment of internal and surface residues in empirical pka predictions (2011) J. Chem. Theory Comput., 7, pp. 525-537
  • Sondergaard, C.R., Olsson, M.H.M., Rostkowski, M., Jensen, J.H., Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pka values (2011) J. Chem. Theory Comput., 7, pp. 2284-2295
  • Taylor, M.C., Kelly, J.M., Ptcindex: A stable tetracyclineregulated expression vector for trypanosoma cruzi (2006) BMCBiotechnol., 6, p. 32
  • Piacenza, L., Peluffo, G., Alvarez, M.N., Kelly, J.M., Wilkinson, S.R., Radi, R., Peroxiredoxins play a major role in protecting trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite (2008) Biochem. J., 410, pp. 359-368
  • Wilkinson, S.R., Prathalingam, S.R., Taylor, M.C., Ahmed, A., Horn, D., Kelly, J.M., Functional characterisation of the iron superoxide dismutase gene repertoire in trypanosoma brucei (2006) Free Radic. Biol. Med., 40, pp. 198-209
  • Forman, H.J., Fridovich, I., Superoxide dismutase: A comparison of rate constants (1973) Arch. Biochem. Biophys., 158, pp. 396-400
  • Crow, J.P., Beckman, J.S., McCord, J.M., Sensitivity of the essential zinc-thiolate moiety of yeast alcohol dehydrogenase to hypochlorite and peroxynitrite (1995) Biochemistry, 34, pp. 3544-3552
  • Zou, M.H., Daiber, A., Peterson, J.A., Shoun, H., Ullrich, V., Rapid reactions of peroxynitrite with heme-thiolate proteins as the basis for protection of prostacyclin synthase from inactivation by nitration (2000) Arch. Biochem. Biophys., 376, pp. 149-155
  • Ferrer-Sueta, G., Radi, R., Chemical biology of peroxynitrite: Kinetics, diffusion, and radicals (2009) ACS Chem. Biol., 4, pp. 161-177
  • Radi, R., Nitric oxide, oxidants, and protein tyrosine nitration (2004) Proc. Natl. Acad. Sci. U.S.A., 101, pp. 4003-4008
  • Tien, M., Berlett, B.S., Levine, R.L., Chock, P.B., Stadtman, E.R., Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: Ph dependence of carbonyl formation, tyrosine nitration, and methionine oxidation (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 7809-7814
  • Denicola, A., Freeman, B., Trujillo, M., Radi, R., Peroxynitrite reaction with carbon dioxide/bicarbonate: Kinetics and influence on peroxynitrite- mediated oxidations (1996) Arch. Biochem. Biophys., 333, pp. 49-58
  • Lymar, S.V., Hurst, J.K., Carbon dioxide: Physiological catalyst for peroxynitrite-mediated cellular damage or cellular protectant? (1996) Chem. Res. Toxicol., 9, pp. 845-850
  • Pryor, W.A., Lemercier, J.N., Zhang, H., Uppu, R.M., Squadrito, G.L., The catalytic role of carbon dioxide in the decomposition of peroxynitrite (1997) Free Radic. Biol. Med., 23, pp. 331-338
  • Koppenol, W.H., Kissner, R., Can onooh undergo homolysis? (1998) Chem. Res. Toxicol., 11, pp. 87-90
  • Koppenol, W.H., Moreno, J.J., Pryor, W.A., Ischiropoulos, H., Beckman, J.S., Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide (1992) Chem. Res. Toxicol., 5, pp. 834-842
  • Ford, E., Hughes, M.N., Wardman, P., Kinetics of the reactions of nitrogen dioxide with glutathione, cysteine, and uric acid at physiological ph (2002) Free Radic. Biol. Med., 32, pp. 1314-1323
  • Reiter, C.D., Teng, R.J., Beckman, J.S., Superoxide reacts with nitric oxide to nitrate tyrosine at physiological ph via peroxynitrite (2000) J. Biol. Chem., 275, pp. 32460-32466
  • Sawa, T., Akaike, T., Maeda, H., Tyrosine nitration by peroxynitrite formed from nitric oxide and superoxide generated by xanthine oxidase (2000) J. Biol. Chem., 275, pp. 32467-32474
  • Abriata, L.A., Cassina, A., Tórtora, V., Marín, M., Souza, J.M., Castro, L., Vila, A.J., Radi, R., Nitration of solvent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption: Nuclear magnetic resonance and optical spectroscopy studies (2009) J. Biol. Chem., 284, pp. 17-26
  • Bachega, J.F., Navarro, M.V., Bleicher, L., Bortoleto-Bugs, R.K., Dive, D., Hoffmann, P., Viscogliosi, E., Garratt, R.C., Systematic structural studies of iron superoxide dismutases from human parasites and a statistical coupling analysis of metal binding specificity (2009) Proteins, 77, pp. 26-37
  • Boucher, I.W., Brzozowski, A.M., Brannigan, J.A., Schnick, C., Smith, D.J., Kyes, S.A., Wilkinson, A.J., The crystal structure of superoxide dismutase from plasmodium falciparum (2006) BMC Struct. Biol., 6, p. 20
  • Guan, Y., Hickey, M.J., Borgstahl, G.E., Hallewell, R.A., Lepock, J.R., O'Connor, D., Hsieh, Y., Tainer, J.A., Crystal structure of y34f mutant human mitochondrial manganese superoxide dismutase and the functional role of tyrosine 34 (1998) Biochemistry, 37, pp. 4722-4730
  • Reece, S.Y., Hodgkiss, J.M., Stubbe, J., Nocera, D.G., Protoncoupled electron transfer: The mechanistic underpinning for radical transport and catalysis in biology (2006) Philos. Trans. R. Soc. Lond B Biol. Sci., 361, pp. 1351-1364
  • Bhattacharjee, S., Deterding, L.J., Jiang, J., Bonini, M.G., Tomer, K.B., Ramirez, D.C., Mason, R.P., Electron transfer between a tyrosyl radical and a cysteine residue in hemoproteins: Spin trapping analysis (2007) J. Am. Chem. Soc., 129, pp. 13493-13501
  • Witting, P.K., Mauk, A.G., Reaction of human myoglobin and h2o2. Electron transfer between tyrosine 103 phenoxyl radical and cysteine 110 yields a protein-thiyl radical (2001) J. Biol. Chem., 276, pp. 16540-16547
  • Giese, B., Graber, M., Cordes, M., Electron transfer in peptides and proteins (2008) Curr. Opin. Chem. Biol., 12, pp. 755-759
  • Cordes, M., Köttgen, A., Jasper, C., Jacques, O., Boudebous, H., Giese, B., Influence of amino acid side chains on long-distance electron transfer in peptides: Electron hopping via "stepping stones" (2008) Angew Chem. Int. Ed. Engl., 47, pp. 3461-3463
  • Graceffa, P., Spin labeling of protein sulfhydryl groups by spin trapping a sulfur radical: Application to bovine serum albumin and myosin (1983) Arch. Biochem. Biophys., 225, pp. 802-808
  • Maples, K.R., Jordan, S.J., Mason, R.P., In vivo rat hemoglobin thiyl free radical formation following administration of phenylhydrazine and hydrazine-based drugs (1988) Drug Metab. Dispos., 16, pp. 799-803
  • Gatti, R.M., Radi, R., Augusto, O., Peroxynitrite-mediated oxidation of albumin to the protein-thiyl free radical (1994) FEBS Lett., 348, pp. 287-290
  • Carballal, S., Bartesaghi, S., Radi, R., Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite (2014) Biochim. Biophys. Acta, 1840, pp. 768-780
  • Fasman, G.D., (1976) Handbook of Biochemistry and Molecular Biology: Physical Data and Chemical Data, pp. 305-351. , CRC Press, Inc., Cleveland, OH
  • Radi, R., Peroxynitrite, a stealthy biological oxidant (2013) J. Biol. Chem., 288, pp. 26464-26472
  • Quint, P., Reutzel, R., Mikulski, R., McKenna, R., Silverman, D.N., Crystal structure of nitrated human manganese superoxide dismutase: Mechanism of inactivation (2006) Free Radic. Biol. Med., 40, pp. 453-458
  • Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin, J.C., Smith, C.D., Beckman, J.S., Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase (1992) Arch. Biochem. Biophys., 298, pp. 431-437
  • Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Zwart, P.H., Phenix: A comprehensive python-based system for macromolecular structure solution (2010) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 213-221

Citas:

---------- APA ----------
Martinez, A., Peluffo, G., Petruk, A.A., Hugo, M., Piñeyro, D., Demicheli, V., Moreno, D.M.,..., Piacenza, L. (2014) . Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of trypanosoma cruzi iron-superoxide dismutases (fe-sods) a and b : Disparate susceptibilities due to the repair of tyr35 radical by cys83 in fe-sodb through intramolecular electron transfer. Journal of Biological Chemistry, 289(18), 12760-12778.
http://dx.doi.org/10.1074/jbc.M113.545590
---------- CHICAGO ----------
Martinez, A., Peluffo, G., Petruk, A.A., Hugo, M., Piñeyro, D., Demicheli, V., et al. "Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of trypanosoma cruzi iron-superoxide dismutases (fe-sods) a and b : Disparate susceptibilities due to the repair of tyr35 radical by cys83 in fe-sodb through intramolecular electron transfer" . Journal of Biological Chemistry 289, no. 18 (2014) : 12760-12778.
http://dx.doi.org/10.1074/jbc.M113.545590
---------- MLA ----------
Martinez, A., Peluffo, G., Petruk, A.A., Hugo, M., Piñeyro, D., Demicheli, V., et al. "Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of trypanosoma cruzi iron-superoxide dismutases (fe-sods) a and b : Disparate susceptibilities due to the repair of tyr35 radical by cys83 in fe-sodb through intramolecular electron transfer" . Journal of Biological Chemistry, vol. 289, no. 18, 2014, pp. 12760-12778.
http://dx.doi.org/10.1074/jbc.M113.545590
---------- VANCOUVER ----------
Martinez, A., Peluffo, G., Petruk, A.A., Hugo, M., Piñeyro, D., Demicheli, V., et al. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of trypanosoma cruzi iron-superoxide dismutases (fe-sods) a and b : Disparate susceptibilities due to the repair of tyr35 radical by cys83 in fe-sodb through intramolecular electron transfer. J. Biol. Chem. 2014;289(18):12760-12778.
http://dx.doi.org/10.1074/jbc.M113.545590