Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Although transcriptional effects of thyroid hormones have substantial influence on oxidative metabolism, how thyroid sets basal metabolic rate remains obscure. Compartmental localization of nitric-oxide synthases is important for nitric oxide signaling. We therefore examined liver neuronal nitric-oxide synthase-α (nNOS) subcellular distribution as a putative mechanism for thyroid effects on rat metabolic rate. At low 3,3′,5-triiodo-L-thyronine levels, nNOS mRNA increased by 3-fold, protein expression by one-fold, and nNOS was selectively translocated to mitochondria without changes in other isoforms. In contrast, under thyroid hormone administration, mRNA level did not change and nNOS remained predominantly localized in cytosol. In hypothyroidism, nNOS translocation resulted in enhanced mitochondrial nitric-oxide synthase activity with low O2 uptake. In this context, NO utilization increased active O2 species and peroxynitrite yields and tyrosine nitration of complex I proteins that reduced complex activity. Hypothyroidism was also associated to high phospho-p38 mitogen-activated protein kinase and decreased phospho-extracellular signal-regulated kinase 1/2 and cyclin D1 levels. Similarly to thyroid hormones, but without changing thyroid status, nitric-oxide synthase inhibitor Nω-nitro-L-arginine methyl ester increased basal metabolic rate, prevented mitochondrial nitration and complex I derangement, and turned mitogen-activated protein kinase signaling and cyclin D1 expression back to control pattern. We surmise that nNOS spatial confinement in mitochondria is a significant downstream effector of thyroid hormone and hypothyroid phenotype. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.

Registro:

Documento: Artículo
Título:Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase
Autor:Franco, M.C.; Antico Arciuch, V.G.; Peralta, J.G.; Galli, S.; Levisman, D.; López, L.M.; Romorini, L.; Poderoso, J.J.; Carreras, M.C.
Filiación:Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, 1120-Buenos Aires, Argentina
Instituto de Biología Celular Y Neurociencia Profesor Eduardo de Robertis, Facultad de Medicina, University of Buenos Aires, 1120-Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, University of Buenos Aires, 1120-Buenos Aires, Argentina
Departamento de Bioquímica Clínica, Facultad de Farmacia Y Bioquímica, University of Buenos Aires, 1120-Buenos Aires, Argentina
Palabras clave:Complexation; Hormones; Metabolism; Neurology; Oxides; Proteins; RNA; Hypothyroid; Mitochondria; Mitochondrial complex I; Neuronal nitric-oxide synthase; Nitric acid; 3,3',5' triiodothyronine; cyclin D1; liver enzyme; messenger RNA; mitochondrial complex 1; mitogen activated protein kinase 1; mitogen activated protein kinase 3; mitogen activated protein kinase p38; n(g) nitroarginine methyl ester; neuronal nitric oxide synthase; neuronal nitric oxide synthase alpha; nitric oxide; oxidoreductase; peroxynitrite; reactive oxygen metabolite; reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone); thiamazole; thyrotropin; tyrosine; unclassified drug; cyclin D1; heat shock protein 90; isoprotein; messenger RNA; mitogen activated protein kinase p38; n(g) nitroarginine methyl ester; neuronal nitric oxide synthase; nitric oxide synthase; oxidizing agent; oxygen; peroxynitrous acid; reactive oxygen metabolite; reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone); thyroid hormone; animal cell; animal experiment; animal tissue; article; basal metabolic rate; cell communication; cellular distribution; controlled study; enzyme activity; enzyme inactivation; enzyme localization; hypothyroidism; liothyronine blood level; male; mitochondrial respiration; nitration; nonhuman; oxygen consumption; phenotype; priority journal; protein expression; protein transport; rat; signal transduction; animal; cell fractionation; chemical model; chemistry; cytosol; electron; enzymology; genetic transcription; hypothyroidism; immunoblotting; immunoelectron microscopy; immunoprecipitation; liver; liver mitochondrion; metabolism; mitochondrion; pathology; polyacrylamide gel electrophoresis; reverse transcription polymerase chain reaction; Wistar rat; Animals; Cyclin D1; Cytosol; Electron Transport Complex I; Electrons; Electrophoresis, Polyacrylamide Gel; HSP90 Heat-Shock Proteins; Hypothyroidism; Immunoblotting; Immunoprecipitation; Liver; Male; MAP Kinase Signaling System; Microscopy, Immunoelectron; Mitochondria; Mitochondria, Liver; Models, Chemical; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Oxidants; Oxygen; p38 Mitogen-Activated Protein Kinases; Peroxynitrous Acid; Phenotype; Protein Isoforms; Protein Transport; Rats; Rats, Wistar; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Subcellular Fractions; Thyroid Hormones; Transcription, Genetic
Año:2006
Volumen:281
Número:8
Página de inicio:4779
Página de fin:4786
DOI: http://dx.doi.org/10.1074/jbc.M512080200
Título revista:Journal of Biological Chemistry
Título revista abreviado:J. Biol. Chem.
ISSN:00219258
CODEN:JBCHA
CAS:3,3',5' triiodothyronine, 5817-39-0, 70-39-3; mitogen activated protein kinase 1, 137632-08-7; mitogen activated protein kinase 3, 137632-07-6; n(g) nitroarginine methyl ester, 50903-99-6; neuronal nitric oxide synthase, 506430-87-1; nitric oxide, 10102-43-9; oxidoreductase, 9035-73-8, 9035-82-9, 9037-80-3, 9055-15-6; reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone), 9028-04-0; thiamazole, 60-56-0; thyrotropin, 9002-71-5; tyrosine, 16870-43-2, 55520-40-6, 60-18-4; nitric oxide synthase, 125978-95-2; oxygen, 7782-44-7; peroxynitrous acid, 14691-52-2; Cyclin D1, 136601-57-5; Electron Transport Complex I, 1.6.5.3; HSP90 Heat-Shock Proteins; NG-Nitroarginine Methyl Ester, 50903-99-6; Nitric Oxide Synthase, 1.14.13.39; Nitric Oxide Synthase Type I, 1.14.13.39; Oxidants; Oxygen, 7782-44-7; Peroxynitrous Acid, 14691-52-2; Protein Isoforms; RNA, Messenger; Reactive Oxygen Species; Thyroid Hormones; p38 Mitogen-Activated Protein Kinases, 2.7.1.37
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00219258_v281_n8_p4779_Franco.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219258_v281_n8_p4779_Franco

Referencias:

  • Moro, L., Marra, E., Capuano, F., Greco, M., (2004) Endocrinology, 145, pp. 5121-5128
  • Scanlan, T.S., Suchland, K.L., Hart, M.E., Chiellini, G., Huang, Y., Kruzich, P.J., Frascarelli, S., Grandy, D.K., (2004) Nat. Med., 10, pp. 638-642
  • Pillar, T.M., Seitz, H.J., (1997) Eur. J. Endocrinol., 136, pp. 231-239
  • Liggett, S.B., (2004) Nat. Med., 10, pp. 582-583
  • Toft, A.D., (1994) New Engl. J. Med., 331, pp. 171-180
  • Barouch, L.A., Harrison, R.W., Skaf, M.W., Rosas, G.O., Cappola, T.P., Kobeissi, Z.A., Hobai, I.A., Hare, J.M., (2002) Nature, 416, pp. 337-339
  • Fulton, D., Babbitt, R., Zoellner, S., Fontana, J., Acevedo, L., McCabe, T.J., Iwakiri, Y., Sessa, W.C., (2004) J. Biol. Chem., 279, pp. 30349-30357
  • Giulivi, C., Poderoso, J.J., Boveris, A., (1998) J. Biol. Chem., 273, pp. 11038-11043
  • Ghafourifar, P., Cadenas, E., (2005) Trends Pharmacol. Sci., 26, pp. 190-195
  • Carreras, M.C., Peralta, J.G., Converso, D.P., Finocchietto, P.V., Rebagliati, I., Zaninovich, A.A., Poderoso, J.J., (2001) Am. J. Physiol., 281, pp. H2282-H2288
  • Ghafourifar, P., Schenk, U., Klein, S.D., Richter, C., (1999) J. Biol. Chem., 274, pp. 31185-31188
  • Elfering, S.L., Haynes, V.L., Traaseth, N.J., Ettl, A., Giulivi, C., (2004) Am. J. Physiol., 286, pp. H22-H29
  • Carreras, M.C., Converso, D.P., Lorenti, A.S., Barbich, M., Levisman, D.M., Jaitovich, A., Antico Arciuch, V.G., Poderoso, J.J., (2004) Hepatology, 40, pp. 157-166
  • Riobo, N.A., Melani, M., Sanjuan, N., Fiszman, M.L., Gravielle, M.C., Carreras, M.C., Cadenas, E., Poderoso, J.J., (2002) J. Biol. Chem., 277, pp. 42447-42455
  • Peralta, J.G., Finocchietto, P.V., Converso, D., Schopfer, F., Carreras, M.C., Poderoso, J.J., (2003) Am. J. Physiol., 284, pp. H2375-H2383
  • Valdez, L.B., Zaobornyj, T., Alvarez, S., Bustamante, J., Costa, L.E., Boveris, A., (2004) Mol. Aspects Med., 25, pp. 49-59
  • Brookes, P.S., Kraus, D.W., Shiva, S., Doeller, J.E., Barone, M.C., Patel, R.P., Lancaster Jr., J.R., Darley-Usmar, V., (2003) J. Biol. Chem., 278, pp. 31603-31609
  • Poderoso, J.J., Carreras, M.C., Lisdero, C., Riobo, N., Schopfer, F., Boveris, A., (1996) Arch. Biochem. Biophys., 328, pp. 85-92
  • Poderoso, J.J., Lisdero, C., Schopfer, F., Riobo, N., Carreras, M.C., Cadenas, E., Boveris, A., (1999) J. Biol. Chem., 274, pp. 37709-37716
  • Bianchi, M.S., Catalano, P.N., Bonaventura, M.M., Silveyra, P., Bettler, B., Libertun, C., Lux-Lantos, V.A., (2004) Neuroendocrinology, 80, pp. 129-142
  • Cymeryng, C.B., Lotito, S.P., Colonna, C., Finkielstein, C., Pomeraniec, Y., Grión, N., Gadda, L., Podestá, E.J., (2002) Endocrinology, 143, pp. 1235-1242
  • Alvarez, M., Depino, A.M., Podhajcer, O.L., Pitossi, F.J., (2000) Anal. Biochem., 287, pp. 87-94
  • Ogilvie, P., Achilling, K., Billingsley, M.L., Schmidt, H., (1995) FASEB J., 9, pp. 799-806
  • López-Figueroa, M., Caamaño, C., Morano, M.I., Ronn, L.C., Akil, H., Watson, S.J., (2000) Biochem. Biophys. Res. Commun., 272, pp. 129-133
  • Berry, M.N., Friend, D.S., (1969) J. Cell Biol., 43, pp. 506-520
  • Schägger, H., (2001) Methods Cell Biol., 65, pp. 231-244
  • Schagger, H., Von Jagow, G., (1991) Anal. Biochem., 199, pp. 223-231
  • Valdez, L.B., Zaobornyj, T., Boveris, A., (2005) Methods Enzymol., 396, pp. 444-455
  • Venditti, P., De Rosa, R., Di Meo, S., (2003) Mol. Cell. Endocrinol., 205, pp. 185-192
  • Lopez-Torres, M., Romero, M., Barja, G., (2000) Mol. Cell. Endocrinol., 168, pp. 127-134
  • Das, K., Chainy, G.B., (2001) Biochim. Biophys. Acta, 1537, pp. 1-13
  • Myhre, O., Andersen, J.M., Aarnes, H., Fonnum, F., (2003) Biochem. Pharmacol., 65, pp. 1575-1582
  • Pibiri, M., Ledda-Columbano, G.M., Cossu, C., Simbula, G., Menegazzi, M., Shinozuka, H., Columbano, A., (2001) FASEB J., 15, pp. 1006-1013
  • Jiang, J., Cyr, D., Babbitt, R.W., Sessa, W.C., Patterson, C., (2003) J. Biol. Chem., 278, pp. 49332-49341
  • Liu, J., Garcia-Cardena, G., Sessa, W.C., (1995) Biochemistry, 34, pp. 12333-12340
  • Kanai, A.J., Pearce, L.L., Clemens, P.R., Birder, L.A., Vanbibber, M.M., Choi, S.Y., De Groat, W.C., Peterson, J., (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 14126-14131
  • Sato, Y., Sagami, I., Shimizu, T., (2004) J. Biol. Chem., 279, pp. 8827-8836
  • Hare, J.M., (2004) Lancet, 363, pp. 1338-1339
  • Venkatraman, A., Shiva, S., Wigley, A., Ulasova, E., Chhieng, D., Bailey, S.M., Darley-Usmar, V.M., (2004) Hepatology, 40, pp. 565-573
  • Riobo, N.A., Clementi, E., Melani, M., Boveris, A., Cadenas, E., Moncada, S., Poderoso, J.J., (2001) Biochem. J., 359, pp. 139-145
  • Zhang, J., Jin, B., Li, L., Block, E.R., Patel, J.M., (2005) Am. J. Physiol., 288, pp. C840-C849
  • Persichini, T., Mazzone, V., Polticelli, F., Moreno, S., Venturini, G., Clementi, E., Colasanti, M., (2005) Neurosci. Lett., 384, pp. 254-259
  • Barrientos, A., Moraes, C.T., (1999) J. Biol. Chem., 274, pp. 16188-16197
  • Souza, J.M., Choi, I., Chen, Q., Weisse, M., Daikhin, E., Yudkoff, M., Obin, M., Ischiropoulos, H., (2000) Arch. Biochem. Biophys., 380, pp. 360-366
  • Carreras, M.C., Franco, M.C., Peralta, J.G., Poderoso, J.J., (2004) Mol. Aspects Med., 25, pp. 125-139
  • Koeck, T., Fu, X., Hazen, S.L., Crabb, J.W., Stuehr, D.J., Aulak, K.S., (2004) J. Biol. Chem., 279, pp. 27257-27262
  • Nisoli, E., Clementi, E., Paolucci, C., Cozzi, V., Tonello, C., Sciorati, C., Bracale, R., Carruba, M.O., (2003) Science, 299, pp. 896-899
  • Dougherty, C.J., Kubasiak, L.A., Frazier, D.P., Li, H., Xiong, W.C., Bishopric, N.H., Webster, K.A., (2004) FASEB J., 18, pp. 1060-1070
  • Jope, R.S., Zhang, L., Song, L., (2000) Arch. Biochem. Biophys., 376, pp. 365-370

Citas:

---------- APA ----------
Franco, M.C., Antico Arciuch, V.G., Peralta, J.G., Galli, S., Levisman, D., López, L.M., Romorini, L.,..., Carreras, M.C. (2006) . Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase. Journal of Biological Chemistry, 281(8), 4779-4786.
http://dx.doi.org/10.1074/jbc.M512080200
---------- CHICAGO ----------
Franco, M.C., Antico Arciuch, V.G., Peralta, J.G., Galli, S., Levisman, D., López, L.M., et al. "Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase" . Journal of Biological Chemistry 281, no. 8 (2006) : 4779-4786.
http://dx.doi.org/10.1074/jbc.M512080200
---------- MLA ----------
Franco, M.C., Antico Arciuch, V.G., Peralta, J.G., Galli, S., Levisman, D., López, L.M., et al. "Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase" . Journal of Biological Chemistry, vol. 281, no. 8, 2006, pp. 4779-4786.
http://dx.doi.org/10.1074/jbc.M512080200
---------- VANCOUVER ----------
Franco, M.C., Antico Arciuch, V.G., Peralta, J.G., Galli, S., Levisman, D., López, L.M., et al. Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase. J. Biol. Chem. 2006;281(8):4779-4786.
http://dx.doi.org/10.1074/jbc.M512080200