Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Transcription and pre-mRNA splicing are coordinated temporally and spatially, and both processes can influence each other. In particular, control of transcriptional elongation by RNA polymerase II has proved to be important for alternative splicing regulation. In this report we demonstrate that the efficiency of exon recognition by the splicing machinery is crucial for the elongation control. Alternative splicing of the fibronectin extra domain I (EDI) is because the polypyrimidine tract of its 3'-splice site occurs suboptimal. By mutating the polypyrimidine tract of EDI in two different positions, individually or in combination, and by disrupting its exonic splicing silencer, we managed to generate minigenes with increasing degrees of exon recognition. Improvement of exon recognition is evidenced by independence from the splicing regulator SF2/ASF for inclusion. The mutated minigenes were used to transfect human cells in culture and study the responsiveness of EDI alternative splicing to activation or inhibition of pol II elongation. Our results revealed that responsiveness of exon skipping to elongation is inversely proportional to 3'-splice site strength, which means that the better the alternative exon is recognized by the splicing machinery, the less its degree of inclusion is affected by transcriptional elongation.


Documento: Artículo
Título:Influence of Polymerase II Processivity on Alternative Splicing Depends on Splice Site Strength
Autor:Nogués, G.; Muñoz, M.J.; Kornblihtt, A.R.
Filiación:Depto. de Fisiol., Biol. Molec./Cel., Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, Argentina
Palabras clave:Cell culture; Enzyme inhibition; Genes; Mutagenesis; RNA; Splice site strength; Enzymes; elongation factor; fibronectin; fibronectin extra domain I; messenger RNA; polypyrimidine tract binding protein; RNA polymerase II; unclassified drug; article; controlled study; enzyme activation; enzyme inhibition; exon; gene mutation; human; human cell; molecular recognition; nonhuman; point mutation; priority journal; regulatory mechanism; RNA splicing; silencer element; transcription regulation; Alternative Splicing; Binding Sites; Cell Line; Cell Line, Tumor; Exons; Herpes Simplex Virus Protein Vmw65; Humans; Models, Biological; Mutation; Phosphorylation; Plasmids; Point Mutation; Polymorphism, Genetic; Protein Structure, Tertiary; Pyrimidines; RNA Polymerase II; RNA Splicing; RNA, Messenger; Time Factors; Transcription, Genetic; Transfection
Página de inicio:52166
Página de fin:52171
Título revista:Journal of Biological Chemistry
Título revista abreviado:J. Biol. Chem.
CAS:fibronectin, 86088-83-7; Herpes Simplex Virus Protein Vmw65; Pyrimidines; RNA Polymerase II, EC 2.7.7.-; RNA, Messenger


  • (2001) Nature, 409, pp. 860-921
  • Reed, R., (1989) Genes Dev., 3, pp. 2113-2123
  • Bentley, D., (2002) Curr. Opin. Cell Biol., 14, pp. 336-342
  • Howe, K.J., (2002) Biochim. Biophys. Acta, 1577, pp. 308-324
  • Maniatis, T., Reed, R., (2002) Nature, 416, pp. 499-506
  • Neugebauer, K., (2002) J. Cell Sci., 115, pp. 3865-3871
  • Proudfoot, N., Furger, A., Dye, M.J., (2002) Cell, 108, pp. 501-512
  • Cramer, P., Pesce, C.G., Baralle, F.E., Kornblihtt, A.R., (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 11456-11460
  • Cramer, P., Caceres, J.F., Cazalla, D., Kadener, S., Muro, A.F., Baralle, F.E., Kornblihtt, A.R., (1999) Mol. Cell, 4, pp. 251-258
  • Kadener, S., Cramer, P., Nogués, G., Cazalla, D., De La Mata, M., Fededa, J.P., Werbajh, S.E., Kornblihtt, A.R., (2001) EMBO J., 20, pp. 5759-5768
  • Kadener, S., Fededa, J.P., Rosbash, M., Kornblihtt, A.R., (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 8185-8190
  • Nogués, G., Kadener, S., Cramer, P., Bentley, D., Kornblihtt, A.R., (2002) J. Biol. Chem., 277, pp. 43110-43114
  • De La Mata, M., Alonso, C.R., Kadener, S., Fededa, J.P., Blaustén, M., Pelisch, F., Cramer, P., Kornblihtt, A.R., (2003) Mol. Cell, 12, pp. 525-532
  • Blau, J., Xiao, H., McCracken, S., O'Hare, P., Greenblatt, J., Bentley, D., (1996) Mol. Cell. Biol., 16, pp. 2044-2055
  • Caceres, J.F., Misteli, T., Screaton, G.R., Spector, D.L., Krainer, A.R., (1997) J. Cell Biol., 138, pp. 225-238
  • Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., Tuschl, T., (2001) Nature, 411, pp. 494-498
  • Zhang, M.Q., (1998) Hum. Mol. Genet., 7, pp. 919-932
  • Mount, S.M., (1982) Nucleic Acids Res., 10, pp. 459-472
  • Caputi, M., Casari, G., Guenzi, S., Tagliabue, R., Sidoli, A., Melo, C.A., Baralle, F.E., (1994) Nucleic Acids Res., 22, pp. 1018-1022
  • Marshall, N.F., Peng, J., Xie, Z., Price, D.H., (1996) J. Biol. Chem., 271, pp. 27176-27183
  • Price, D.H., (2000) Mol. Cell. Biol., 20, pp. 2629-2634
  • Tamm, I., Kikuchi, T., Darnell Jr., J.E., Salditt-Georgieff, M., (1980) Biochemistry, 19, pp. 2743-2748
  • Buvoli, M., Mayer, S.A., Patton, J.G., (1997) EMBO J., 16, pp. 7174-7183
  • Mayeda, A., Helfman, D.M., Krainer, A.R., (1993) Mol. Cell. Biol., 13, pp. 2993-3001
  • Pagani, F., Stuani, C., Zuccato, E., Kornblihtt, A.R., Baralle, F.E., (2003) J. Biol. Chem., 278, pp. 1511-1517
  • Auboeuf, D., Hönig, A., Berget, S.M., O'Malley, B.W., (2002) Science, 298, pp. 416-419
  • Du, K., Peng, Y., Greenbaurn, L.E., Haber, B.A., Taub, R., (1997) Mol. Cell Biol., 17, pp. 4096-4104
  • Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J., Smith, C.W., (1998) Nucleic Acids Res., 26, pp. 5568-5572
  • Hatton, A.R., Subramaniam, V., Lopez, A.J., (1998) Mol. Cell, 2, pp. 787-796
  • Muro, A.F., Iaconcig, A., Baralle, F.E., (1998) FEBS Lett., 437, pp. 137-141
  • Howe, K., Kane, C.M., Ares, M., (2003) RNA (New York), 9, pp. 993-1006
  • Chandler, D.S., McGuffin, M.E., Mattox, W., (2001) Nucleic Acids Res., 29, pp. 3012-3019
  • Muro, A.F., Caputi, M., Pariyarath, R., Pagani, F., Buratti, E., Baralle, F.E., (1999) Mol. Cell. Biol., 19, pp. 2657-2671


---------- APA ----------
Nogués, G., Muñoz, M.J. & Kornblihtt, A.R. (2003) . Influence of Polymerase II Processivity on Alternative Splicing Depends on Splice Site Strength. Journal of Biological Chemistry, 278(52), 52166-52171.
---------- CHICAGO ----------
Nogués, G., Muñoz, M.J., Kornblihtt, A.R. "Influence of Polymerase II Processivity on Alternative Splicing Depends on Splice Site Strength" . Journal of Biological Chemistry 278, no. 52 (2003) : 52166-52171.
---------- MLA ----------
Nogués, G., Muñoz, M.J., Kornblihtt, A.R. "Influence of Polymerase II Processivity on Alternative Splicing Depends on Splice Site Strength" . Journal of Biological Chemistry, vol. 278, no. 52, 2003, pp. 52166-52171.
---------- VANCOUVER ----------
Nogués, G., Muñoz, M.J., Kornblihtt, A.R. Influence of Polymerase II Processivity on Alternative Splicing Depends on Splice Site Strength. J. Biol. Chem. 2003;278(52):52166-52171.