Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Escherichia coli has several elaborate sensing mechanisms for response to availability of oxygen and other electron acceptors, as well as the carbon source in the surrounding environment. Among them, the CreBC and ArcAB two-component signal transduction systems are responsible for regulation of carbon source utilization and redox control in response to oxygen availability, respectively. We assessed the role of CreBC and ArcAB in regulating the central carbon metabolism of E. coli under microaerobic conditions by means of 13C-labeling experiments in chemostat cultures of a wild-type strain, ΔcreB and ΔarcA single mutants, and a ΔcreB ΔarcA double mutant. Continuous cultures were conducted at D = 0.1 h-1 under carbon-limited conditions with restricted oxygen supply. Although all experimental strains metabolized glucose mainly through the Embden-Meyerhof- Parnas pathway, mutant strains had significantly lower fluxes in both the oxidative and the nonoxidative pentose phosphate pathways. Significant differences were also found at the pyruvate branching point. Both pyruvate-formate lyase and the pyruvate dehydrogenase complex contributed to acetyl-coenzyme A synthesis from pyruvate, and their activity seemed to be modulated by both ArcAB and CreBC. Strains carrying the creB deletion showed a higher biomass yield on glucose compared to the wild-type strain and its ΔarcA derivative, which also correlated with higher fluxes from building blocks to biomass. Glyoxylate shunt and lactate dehydrogenase were active mainly in the ΔarcA strain. Finally, it was observed that the tricarboxylic acid cycle reactions operated in a rather cyclic fashion under our experimental conditions, with reduced activity in the mutant strains. Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Registro:

Documento: Artículo
Título:Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions
Autor:Nikel, P.I.; Zhu, J.; San, K.-Y.; Méndez, B.S.; Bennett, G.N.
Filiación:Department of Biochemistry and Cell Biology, Rice University, 6100 Main St., Houston, TX 77251-1892, United States
Department of Bioengineering, Rice University, Houston, TX, United States
Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
Palabras clave:acetyl coenzyme A; carbon 13; protein arcAB; protein crebc; regulator protein; unclassified drug; article; bacterial growth; bacterial metabolism; carbon metabolism; enzyme activity; Escherichia coli; gene deletion; nonhuman; pentose phosphate cycle; priority journal; signal transduction; Acetyl Coenzyme A; Aerobiosis; Bacterial Outer Membrane Proteins; Carbon; Carbon Isotopes; Escherichia coli; Escherichia coli Proteins; Gene Deletion; Gene Expression Regulation, Bacterial; Glucose; Metabolic Networks and Pathways; Oxidation-Reduction; Oxygen; Pyruvic Acid; Repressor Proteins; Staining and Labeling; Arca; Escherichia coli
Año:2009
Volumen:191
Número:17
Página de inicio:5538
Página de fin:5548
DOI: http://dx.doi.org/10.1128/JB.00174-09
Título revista:Journal of Bacteriology
Título revista abreviado:J. Bacteriol.
ISSN:00219193
CODEN:JOBAA
CAS:acetyl coenzyme A, 72-89-9; carbon 13, 14762-74-4; Acetyl Coenzyme A, 72-89-9; Bacterial Outer Membrane Proteins; Carbon, 7440-44-0; Carbon Isotopes; Escherichia coli Proteins; Glucose, 50-99-7; Oxygen, 7782-44-7; Pyruvic Acid, 127-17-3; Repressor Proteins; arcA protein, E coli
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219193_v191_n17_p5538_Nikel

Referencias:

  • Alexeeva, S., de Kort, B., Sawers, G., Hellingwerf, K.J., Teixeira de Mattos, M.J., Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli (2000) J. Bacteriol, 182, pp. 4934-4940
  • Alexeeva, S., Hellingwerf, K.J., Teixeira de Mattos, M.J., Quantitative assessment of oxygen availability: Perceived aerobiosis and its effect on flux distribution in the respiratory chain of Escherichia coli (2002) J. Bacteriol, 184, pp. 1402-1406
  • Alexeeva, S., Hellingwerf, K.J., Teixeira de Mattos, M.J., Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions (2003) J. Bacteriol, 185, pp. 204-209
  • Amemura, M., Makino, K., Shinagawa, H., Nakata, A., Nucleotide sequence of the phoM region of Escherichia coli: Four open reading frames may constitute an operon (1986) J. Bacteriol, 168, pp. 294-302
  • Avison, M.B., Horton, R.E., Walsh, T.R., Bennett, P.M., Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media (2001) J. Biol. Chem, 276, pp. 26955-26961
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem, 72, pp. 248-254
  • Bunch, P.K., Mat-Jan, F., Lee, N.A., Clark, D.P., The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli (1997) Microbiology, 143, pp. 187-195
  • Cariss, S.J.L., Tayler, A.E., Avison, M.B., Defining the growth conditions and promoter-proximal DNA sequences required for activation of gene expression by CreBC in Escherichia coli (2008) J. Bacteriol, 190, pp. 3930-3939
  • Clark, D.P., The fermentation pathways of Escherichia coli (1989) FEMS Microbiol. Rev, 5, pp. 223-234
  • Cotter, P.A., Gunsalus, R.P., Contribution of the fnr and arcA gene products in coordinate regulation of cytochrome o and days oxidase (cyoABCDE and cydAB) genes in Escherichia coli (1992) FEMS Microbiol. Lett, 70, pp. 31-36
  • Chang, D.E., Shin, S., Rhee, J.S., Pan, J.G., Acetate metabolism in a pta mutant of Escherichia coli W3110: Importance of maintaining acetyl coenzyme A flux for growth and survival (1999) J. Bacteriol, 181, pp. 6656-6663
  • Chao, Y.P., Liao, J.C., Alteration of growth yield by overexpression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in Escherichia coli (1993) Appl. Environ. Microbiol, 59, pp. 4261-4265
  • Cherepanov, P.P., Wackernagel, W., Gene disruption in Escherichia coli: Tcr and Kmr cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant (1995) Gene, 158, pp. 9-14
  • Datsenko, K., Wanner, B.L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 6640-6645
  • Dauner, M., Sauer, U., GC-MS analysis of amino acids rapidly provides rich information for the isotopomer balancing (2000) Biotechnol. Prog, 16, pp. 642-649
  • Delgado, J., Liao, J.C., Inverse flux analysis for reduction of acetate excretion in Escherichia coli (1997) Biotechnol. Prog, 13, pp. 361-367
  • Dittrich, C.R., Bennett, G.N., San, K.Y., Characterization of the acetate-producing pathways in Escherichia coli (2005) Biotechnol. Prog, 21, pp. 1062-1067
  • Dixon, G.H., Kornberg, H.L., Assay methods for key enzymes of the glyoxylate cycle (1959) Biochem. J, 73, pp. 3-10
  • Drapal, N., Sawers, G., Promoter 7 of the E. coli pfl operon is a major determinant in the anaerobic regulation of expression by ArcA (1995) J. Bacteriol, 177, pp. 5338-5341
  • Elias, W.P., Czeczulin, J.R., Henderson, I.R., Trabulsi, L.R., Nataro, J.P., Organization of biogenesis genes for aggregative adherence fimbria II defines a virulence gene cluster in enteroaggregative Escherichia coli (1999) J. Bacteriol, 181, pp. 1779-1785
  • Emmerling, M., Dauner, M., Ponti, A., Fiaux, J., Hochuli, M., Szyperski, T., Wüthrich, K., Sauer, U., Metabolic flux responses to pyruvate kinase knockout in Escherichia coli (2002) J. Bacteriol, 184, pp. 152-164
  • Ferenci, T., Bacterial physiology, regulation and mutational adaptation in a chemostat environment (2008) Adv. Microb. Physiol, 53, pp. 169-229
  • Georgellis, D., Kwon, O., Lin, E.C.C., Quinones as the redox signal for the arc two-component system of bacteria (2001) Science, 292, pp. 2314-2316
  • Gosset, G., Z. Zhang, S. Nayyar, W. A. Cuevas, and M. H. Saier, Jr. 2004. Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J. Bacteriol. 186:3516-3524; Gottschalk, G., (1986) Bacterial metabolism, , Springer Verlag, New York, NY
  • Harder, W., Dijkhuizen, L., Physiological responses to nutrient limitation (1983) Annu. Rev. Microbiol, 37, pp. 1-24
  • Hengge-Aronis, R., Fischer, D., Identification and molecular analysis of glgS, a novel growth-phase-regulated and rpoS-dependent gene involved in glycogen synthesis in Escherichia coli (1992) Mol. Microbiol, 6, pp. 1877-1886
  • Hengge-Aronis, R., The general stress response in Escherichia coli (2000) Bacterial stress responses, pp. 161-178. , G. Storz and R. Hengge-Aronis ed, ASM Press, Washington, DC
  • Hua, Q., Yang, C., Oshima, T., Mori, H., Shimizu, K., Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures (2004) Appl. Environ. Microbiol, 70, pp. 2354-2366
  • Iuchi, S., Lin, E.C.C., arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways (1988) Proc. Natl. Acad. Sci. USA, 85, pp. 1888-1892
  • Iuchi, S., Chepuri, V., Fu, H.A., Gennis, R.B., Lin, E.C.C., Requirement for terminal cytochromes in generation of the aerobic signal for the arc regulatory system in Escherichia coli: Study utilizing deletions and lac fusions of cyo and cyd (1990) J. Bacteriol, 172, pp. 6020-6025
  • Izui, K., Taguchi, M., Morikawa, M., Katsuki, H., Regulation of Escherichia coli phosphoenolpyruvate carboxylase by multiple effectors in vivo. II. Kinetic studies with a reaction system containing physiological concentrations of ligands (1981) J. Biochem, 90, pp. 1321-1331
  • Karp, P.D., Riley, M., Saier Jr., M.H., Paulsen, I.T., Paley, S.M., Pellegrini-Toole, A., The EcoCyc and MetaCyc databases (2000) Nucleic Acids Res, 28, pp. 56-59
  • Kwon, O., Georgellis, D., Lin, E.C.C., Phosphorelay as the sole physiological route of signal transmission by the arc two-component system of Escherichia coli (2000) J. Bacteriol, 182, pp. 3858-3862
  • Kwon, Y.D., Lee, S.Y., Kim, P., A physiology study of Escherichia coli overexpressing phosphoenolpyruvate carboxykinase (2008) Biosci. Biotechnol. Biochem, 72, pp. 1138-1141
  • Lara, A.R., Galindo, E., Ramírez, O.T., Palomares, L.A., Living with heterogeneities in bioreactors: Understanding the effect of environmental gradients in cells (2006) Mol. Biotechnol, 34, pp. 355-381
  • Liao, J.C., Hou, S.Y., Chao, Y.P., Pathway analysis, engineering, and physiological considerations for redirecting central metabolism (1996) Biotechnol. Bioeng, 52, pp. 129-140
  • Lynch, A. S., and E. C. C. Lin. 1996. Responses to molecular oxygen, p. 1526-1538. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., 1. ASM Press, Washington, DC; Maharjan, R.P., Yu, P.L., Seeto, S., Ferenci, T., The role of isocitrate lyase and the glyoxylate cycle in Escherichia coli growing under glucose limitation (2005) Res. Microbiol, 156, pp. 178-183
  • Malpica, R., Franco, B., Rodríguez, C., Georgellis, D., Identification of a quinone-sensitive redox switch in the ArcB sensor kinase (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 13318-13323
  • Martínez-Antonio, A., Collado-Vives, J., Identifying global regulators in transcriptional regulatory networks in bacteria (2003) Curr. Opin. Microbiol, 6, pp. 482-489
  • Nam, T.W., Park, Y.H., Jeong, H.J., Ryu, S., Seok, Y.J., Glucose repression of the Escherichia coli sdhCDAB operon revisited: Regulation by the CRP-cAMP complex (2005) Nucleic Acids Res, 33, pp. 6712-6722
  • Nanchen, A., Schicker, A., Revelles, O., Sauer, U., Cyclic AMP-dependent catabolite repression is the dominant control mechanism of metabolic fluxes under glucose limitation in Escherichia coli (2008) J. Bacteriol, 190, pp. 2323-2330
  • Neidhardt, F.C., Ingraham, J.L., Schaechter, M., (1990) Physiology of the bacterial cell: A molecular approach, , Sinauer Associates, Sunderland, MA
  • Neijssel, O.M., Teixeira de Mattos, M.J., The energetics of bacterial growth: A reassessment (1994) Mol. Microbiol, 13, pp. 179-182
  • Nikel, P.I., Pettinari, M.J., Galvagno, M.A., Méndez, B.S., Poly(3-hydroxybutyrate) synthesis by recombinant Escherichia coli arcA mutants in microaerobiosis (2006) Appl. Environ. Microbiol, 72, pp. 2614-2620
  • Nikel, P.I., de Almeida, A., Pettinari, M.J., Méndez, B.S., The legacy of HfrH: Mutations in the two-component system CreBC are responsible for the unusual phenotype of an Escherichia coli arcA mutant (2008) J. Bacteriol, 190, pp. 3404-3407
  • Nikel, P.I., Pettinari, M.J., Ramirez, M.C., Galvagno, M.A., Méndez, B.S., Escherichia coli arcA mutants: Metabolic profile characterization of microaerobic cultures using glycerol as a carbon source (2008) J. Mol. Microbiol. Biotechnol, 15, pp. 48-54
  • Notley-McRobb, L., King, T., Ferenci, T., rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses (2002) J. Bacteriol, 184, pp. 806-811
  • Oshima, T., Aiba, H., Masuda, Y., Kanaya, S., Sugiura, M., Wanner, B.L., Mori, H., Mizuno, T., Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12 (2002) Mol. Microbiol, 46, pp. 281-291
  • Overath, P., Schairer, H.U., Stoffel, W., Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli (1970) Proc. Natl. Acad. Sci. USA, 67, pp. 606-612
  • Perrenoud, A., and U. Sauer. 2005. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J. Bacteriol. 187:3171-3179; Roeder, W., Somerville, R., Cloning the trpR gene (1979) Mol. Gen. Genet, 176, pp. 361-368
  • Salmon, K.A., Hung, S.P., Steffen, N.R., Krupp, R., Baldi, P., Hatfield, G.W., Gunsalus, R.P., Global gene expression profiling in Escherichia coli K-12: Effects of oxygen availability and ArcA (2005) J. Biol. Chem, 280, pp. 15084-15096
  • Sauer, U., Lasko, D.R., Fiaux, J., Hochuli, M., Glaser, R., Szyperski, T., Wüthrich, K., Bailey, J.A., Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism (1999) J. Bacteriol, 181, pp. 6679-6688
  • Sawers, G., Heßlinger, C., Muller, N., Kaiser, M., The glycyl radical enzyme TdcE can replace pyruvate-formate lyase in glucose fermentation (1998) J. Bacteriol, 180, pp. 3509-3516
  • Schmidt, K., Marx, A., de Graaf, A.A., Wiechert, W., Sahm, H., Nielsen, J., Villadsen, J., 13C tracer experiments and metabolite balancing for metabolic flux analysis: Comparing two approaches (1998) Biotechnol. Bioeng, 58, pp. 254-257
  • Schmidt, K., Nørregaard, L.C., Pedersen, B., Meissner, A., Duus, J.O., Nielsen, J.O., Villadsen, J., Quantification of intracellular metabolic fluxes from fractional enrichment and 13C-13C coupling constraints on the isotopomer distribution in labeled biomass components (1999) Metab. Eng, 1, pp. 166-179
  • Shalel-Levanon, S., San, K.Y., Bennett, G.N., Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses (2005) Biotechnol. Bioeng, 89, pp. 556-564
  • Shalel-Levanon, S., San, K.Y., Bennett, G.N., Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli (2005) Metab. Eng, 7, pp. 364-374
  • Shalel-Levanon, S., San, K.Y., Bennett, G.N., Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions (2005) Biotechnol. Bioeng, 92, pp. 147-159
  • Snoep, J.L., de Graef, M.R., Westphal, A.H., de Kok, A., Teixeira de Mattos, M.J., Neijssel, O.M., Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii, and Escherichia coli: Implications for their activity in vivo (1993) FEMS Microbiol. Lett, 114, pp. 279-283
  • Somsen, O.J.G., Hoeben, M.A., Esgalhado, E., Snoep, J.L., Visser, D., van der Heijden, R.T.J.M., Heijnen, J.J., Westerhoff, H.V., Glucose and the ATP paradox in yeast (2000) Biochem. J, 352, pp. 593-599
  • Stephanopoulos, G., Aristidou, A.A., Nielsen, J., (1998) Metabolic engineering: Principles and methodologies, , Academic Press, Inc, San Diego, CA
  • Stephanopoulos, G., Metabolic fluxes and metabolic engineering (1999) Metab. Eng, 1, pp. 1-11
  • Szyperski, T., Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism (1995) Eur. J. Biochem, 232, pp. 433-448
  • Underwood, S.A., Zhou, S., Causey, T.B., Yomano, L.P., Shanmugam, K.T., Ingram, L.O., Genetic changes to optimize carbon partitioning between ethanol and biosynthesis in ethanologenic Escherichia coli (2002) Appl. Environ. Microbiol, 68, pp. 6263-6272
  • van Winden, W.A., Wittman, C., Heinzle, E., Heijnen, J.J., Correcting mass isotopomer distributions for naturally occurring isotopes (2002) Biotechnol. Bioeng, 80, pp. 477-479
  • Veeger, C., DerVartanian, D.V., Zeylemaker, W.P., Succinate dehydrogenase (1969) Methods Enzymol, 13, pp. 81-90
  • Verduyn, C., Physiology of yeasts in relation to biomass yield (1991) Antonie van Leeuwenhoek, 60, pp. 325-353
  • Weitzman, P.D.J., Citrate synthase from Escherichia coli (1969) Methods Enzymol, 13, pp. 22-26
  • Wiechert, W., de Graaf, A.A., Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments (1997) Biotechnol. Bioeng, 55, pp. 101-117
  • Wiechert, W., 13C metabolic flux analysis (2001) Metab. Eng, 3, pp. 195-206
  • Yang, Y.T., San, K.Y., Bennett, G.N., Redistribution of metabolic fluxes in Escherichia coli with fermentative lactate dehydrogenase overexpression and deletion (1999) Metab. Eng, 1, pp. 141-152
  • Zhao, J., Shimizu, K., Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method (2003) J. Biotechnol, 101, pp. 101-117
  • Zhu, J., Shalel-Levanon, S., Bennett, G.N., San, K.Y., Effect of the global redox sensing/regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments (2006) Metab. Eng, 8, pp. 619-627
  • Zhu, J., Shalel-Levanon, S., Bennett, G.N., San, K.Y., The YfiD protein contributes to the pyruvate formate-lyase flux in an Escherichia coli arcA mutant strain (2007) Biotechnol. Bioeng, 97, pp. 138-143
  • Zupke, C., Stephanopoulos, G., Modeling of isotope distribution and intracellular fluxes in metabolic networks using atom mapping matrices (1994) Biotechnol. Prog, 10, pp. 489-498

Citas:

---------- APA ----------
Nikel, P.I., Zhu, J., San, K.-Y., Méndez, B.S. & Bennett, G.N. (2009) . Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions. Journal of Bacteriology, 191(17), 5538-5548.
http://dx.doi.org/10.1128/JB.00174-09
---------- CHICAGO ----------
Nikel, P.I., Zhu, J., San, K.-Y., Méndez, B.S., Bennett, G.N. "Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions" . Journal of Bacteriology 191, no. 17 (2009) : 5538-5548.
http://dx.doi.org/10.1128/JB.00174-09
---------- MLA ----------
Nikel, P.I., Zhu, J., San, K.-Y., Méndez, B.S., Bennett, G.N. "Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions" . Journal of Bacteriology, vol. 191, no. 17, 2009, pp. 5538-5548.
http://dx.doi.org/10.1128/JB.00174-09
---------- VANCOUVER ----------
Nikel, P.I., Zhu, J., San, K.-Y., Méndez, B.S., Bennett, G.N. Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions. J. Bacteriol. 2009;191(17):5538-5548.
http://dx.doi.org/10.1128/JB.00174-09