Artículo

Ballicora, M.A.; Erben, E.D.; Yazaki, T.; Bertolo, A.L.; Demonte, A.M.; Schmidt, J.R.; Aleanzi, M.; Bejar, C.M.; Figueroa, C.M.; Fusari, C.M.; Iglesias, A.A.; Preiss, J. "Identification of regions critically affecting kinetics and allosteric regulation of the Escherichia coli ADP-glucose pyrophosphorylase by modeling and pentapeptide-scanning mutagenesis" (2007) Journal of Bacteriology. 189(14):5325-5333
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

ADP-glucose pyrophosphorylase (ADP-Glc PPase) is the enzyme responsible for the regulation of bacterial glycogen synthesis. To perform a structure-function relationship study of the Escherichia coli ADP-Glc PPase enzyme, we studied the effects of pentapeptide insertions at different positions in the enzyme and analyzed the results with a homology model. We randomly inserted 15 bp in a plasmid with the ADP-Glc PPase gene. We obtained 140 modified plasmids with single insertions of which 21 were in the coding region of the enzyme. Fourteen of them generated insertions of five amino acids, whereas the other seven created a stop codon and produced truncations. Correlation of ADP-Glc PPase activity to these modifications validated the enzyme model. Six of the insertions and one truncation produced enzymes with sufficient activity for the E. coli cells to synthesize glycogen and stain in the presence of iodine vapor. These were in regions away from the substrate site, whereas the mutants that did not stain had alterations in critical areas of the protein. The enzyme with a pentapeptide insertion between Leu102 and Pro103 was catalytically competent but insensitive to activation. We postulate this region as critical for the allosteric regulation of the enzyme, participating in the communication between the catalytic and regulatory domains. Copyright © 2007, American Society for Microbiology. All Rights Reserved.

Registro:

Documento: Artículo
Título:Identification of regions critically affecting kinetics and allosteric regulation of the Escherichia coli ADP-glucose pyrophosphorylase by modeling and pentapeptide-scanning mutagenesis
Autor:Ballicora, M.A.; Erben, E.D.; Yazaki, T.; Bertolo, A.L.; Demonte, A.M.; Schmidt, J.R.; Aleanzi, M.; Bejar, C.M.; Figueroa, C.M.; Fusari, C.M.; Iglesias, A.A.; Preiss, J.
Filiación:Department of Chemistry, Loyola University, Chicago, IL 60626, United States
Laboratorio de Enzimología Molecular, Cátedra de Bioquímica Básica de Macromoléculas, Universidad Nacional del Litoral, Santa Fe, Argentina
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
INGEBI, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias 11, CEP 13400-970, Piracicaba, SP, Brazil
INTA, Castelar, Pcia. de Buenos Aires, Argentina
Palabras clave:glucose 1 phosphate adenylyltransferase; leucine; proline; allosterism; article; binding kinetics; catalysis; correlation analysis; enzyme regulation; Escherichia coli; gene insertion; glycogen synthesis; mutagenesis; nonhuman; pentapeptide scanning mutagenesis; priority journal; sequence homology; stop codon; structure activity relation; Adenosine Triphosphate; Amino Acid Sequence; Catalysis; Codon, Terminator; Escherichia coli; Escherichia coli Proteins; Genes, Bacterial; Glucose-1-Phosphate Adenylyltransferase; Kinetics; Magnesium Chloride; Molecular Sequence Data; Mutagenesis, Insertional; Oligopeptides; Protein Structure, Secondary; Protein Structure, Tertiary; Sequence Homology, Amino Acid; Structural Homology, Protein; Structure-Activity Relationship; Substrate Specificity; Bacteria (microorganisms); Escherichia coli
Año:2007
Volumen:189
Número:14
Página de inicio:5325
Página de fin:5333
DOI: http://dx.doi.org/10.1128/JB.00481-07
Título revista:Journal of Bacteriology
Título revista abreviado:J. Bacteriol.
ISSN:00219193
CODEN:JOBAA
CAS:glucose 1 phosphate adenylyltransferase, 9027-71-8; leucine, 61-90-5, 7005-03-0; proline, 147-85-3, 7005-20-1; Adenosine Triphosphate, 56-65-5; Codon, Terminator; Escherichia coli Proteins; Glucose-1-Phosphate Adenylyltransferase, 2.7.7.27; Magnesium Chloride, 7786-30-3; Oligopeptides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219193_v189_n14_p5325_Ballicora

Referencias:

  • Anton, B.P., Raleigh, E.A., Transposon-mediated linker insertion scanning mutagenesis of the Escherichia coli McrA endonuclease (2004) J. Bacteriol, 186, pp. 5699-5707
  • Ballicora, M.A., Dubay, J.R., Devillers, C.H., Preiss, J., Resurrecting the ancestral enzymatic role of a modulatory subunit (2005) J. Biol. Chem, 280, pp. 10189-10195
  • Ballicora, M.A., Iglesias, A.A., Preiss, J., ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis (2003) Microbiol. Mol. Biol. Rev, 67, pp. 213-225
  • Ballicora, M.A., Iglesias, A.A., Preiss, J., ADP-glucose pyrophosphorylase: A regulatory enzyme for plant starch synthesis (2004) Photosynth. Res, 79, pp. 1-24
  • Ballicora, M.A., Sesma, J.I., Iglesias, A.A., Preiss, J., Characterization of chimeric ADPglucose pyrophosphorylases of Escherichia coli and Agrobacterium tumefaciens. Importance of the C-terminus on the selectivity for allosteric regulators (2002) Biochemistry, 41, pp. 9431-9437
  • Bejar, C.M., Ballicora, M.A., Gómez-Casati, D.F., Iglesias, A.A., Preiss, J., The ADP-glucose pyrophosphorylase from Escherichia coli comprises two tightly bound distinct domains (2004) FEBS Lett, 573, pp. 99-104
  • Biery, M.C., Lopata, M., Craig, N.L., A minimal system for Tn7 transposition: The transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species (2000) J. Mol. Biol, 297, pp. 25-37
  • Brown, K., Pompeo, F., Dixon, S., Mengin-Lecreulx, D., Cambillau, C., Bourne, Y., Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: A paradigm for the related pyrophosphorylase superfamily (1999) EMBO J, 18, pp. 4096-4107
  • Cao, Y.H., Hallet, B., Sherratt, D.J., Hayes, F., Structure-function correlations in the XerD site-specific recombinase revealed by pentapeptide scanning mutagenesis (1997) J. Mol. Biol, 274, pp. 39-53
  • Cross, J.M., Clancy, M., Shaw, J.R., Boehlein, S.K., Greene, T.W., Schmidt, R.R., Okita, T.W., Hannah, L.C., A polymorphic motif in the small subunit of ADP-glucose pyrophosphorylase modulates interactions between the small and large subunits (2005) Plant J, 41, pp. 501-511
  • Cupp-Vickery, J. R., R. Y. Igarashi, and C. R. Meyer. 2005. Preliminary crystallographic analysis of ADP-glucose pyrophosphorylase from Agrobacterium tumefaciens. Acta Crystallogr. Sect. F 61:266-268; Eisenberg, D., Luthy, R., Bowie, J.U., VERIFY3D: Assessment of protein models with three-dimensional profiles (1997) Methods Enzymol, 277, pp. 396-404
  • Fiser, A., Do, R.K.G., Sali, A., Modeling of loops in protein structures (2000) Protein Sci, 9, pp. 1753-1773
  • Fiser, A., Sali, A., ModLoop: Automated modeling of loops in protein structures (2003) Bioinformatics, 19, pp. 2500-2501
  • Fransen, M., Vastiau, I., Brees, C., Brys, V., Mannaerts, G.P., Van Veldhoven, P.P., Analysts of human Pex19p's domain structure by pentapeptide scanning mutagenesis (2005) J. Mol. Biol, 346, pp. 1275-1286
  • Frueauf, J.B., Ballicora, M.A., Preiss, J., Aspartate residue 142 is important for catalysis by ADP-glucose pyrophosphorylase from Escherichia coli (2001) J. Biol. Chem, 276, pp. 46319-46325
  • Gardiol, A., Preiss, J., Escherichia coli E-39 ADPglucose synthetase has different activation kinetics from the wild-type allosteric enzyme (1990) Arch. Biochem. Biophys, 280, pp. 175-180
  • Gentner, N., Preiss, J., Activator-inhibitor interactions in the adenosine diphosphate glucose pyrophosphorylase of Escherichia coli B (1967) Biochem. Biophys. Res. Commun, 27, pp. 417-423
  • Gómez-Casati, D.F., Igarashi, R.Y., Berger, C.N., Brandt, M.E., Iglesias, A.A., Meyer, C.R., Identification of functionally important amino-terminal arginines of Agrobacterium tumefaciens ADP-glucose pyrophosphorylase by alanine scanning mutagenesis (2001) Biochemistry, 40, pp. 10169-10178
  • Gough, J., Karplus, K., Hughey, R., Chothia, C., Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure (2001) J. Mol. Biol, 313, pp. 903-919
  • Govons, S., Gentner, N., Greenberg, E., Preiss, J., Biosynthesis of bacterial glycogen. XI. Kinetic characterization of an altered adenosine diphosphate-glucose synthase from a "glycogen-excess" mutant of Escherichia coli (1973) B. J. Biol. Chem, 248, pp. 1731-1740
  • Govons, S., Vinopal, R., Ingraham, J., Preiss, J., Isolation of mutants of Escherichia coli B altered in their ability to synthesize glycogen (1969) J. Bacteriol, 97, pp. 970-972
  • Guex, N., Peitsch, M.C., SWISS-MODEL and the Swiss-Pdb-Viewer: An environment for comparative protein modeling (1997) Electrophoresis, 18, pp. 2714-2723
  • Hallet, B., Sherratt, D.J., Hayes, F., Pentapeptide scanning mutagenesis: Random insertion of a variable five amino acid cassette in a target protein (1997) Nucleic Acids Res, 25, pp. 1866-1867
  • Hayes, F., Hallet, B., Pentapeptide scanning mutagenesis: Encouraging old proteins to execute unusual tricks (2000) Trends Microbiol, 8, pp. 571-577
  • Hill, A.V., The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves (1910) J. Physiol. (London), 40, pp. 4-7
  • Hill, M.A., Kaufmann, K., Otero, J., Preiss, J., Biosynthesis of bacterial glycogen. Mutagenesis of a catalytic site residue of ADP-glucose pyrophosphorylase from Escherichia coli (1991) J. Biol. Chem, 266, pp. 12455-12460
  • Hill, M.A., Preiss, J., Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli (1998) Biochem. Biophys. Res. Commun, 244, pp. 573-577
  • Iglesias, A.A., Preiss, J., Bacterial glycogen and plant starch biosynthesis (1992) Biochem. Educ, 20, pp. 196-203
  • Jin, X., Ballicora, M.A., Preiss, J., Geiger, J.H., Crystal structure of potato tuber ADP-glucose pyrophosphorylase (2005) EMBO J, 24, pp. 694-704
  • Jones, D.T., GenTHREADER: An efficient and reliable protein fold recognition method for genomic sequences (1999) J. Mol. Biol, 287, pp. 797-815
  • Jones, D.T., Protein secondary structure prediction based on position-specific scoring matrices (1999) J. Mol. Biol, 292, pp. 195-202
  • Krieger, E., Nabuurs, S.B., Vriend, G., Homology modeling (2003) Structural bioinformatics, pp. 509-523. , P. E. Bourne and H. Weissig ed, Wiley-Liss, Inc, Hoboken, NJ
  • Kumar, A., Tanaka, T., Lee, Y.M., Preiss, J., Biosynthesis of bacterial glycogen. Use of site-directed mutagenesis to probe the role of tyrosine 114 in the catalytic mechanism of ADP-glucose synthetase from Escherichia coli (1988) J. Biol. Chem, 263, pp. 14634-14639
  • Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., Procheck - a program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr, 26, pp. 283-291
  • Lee, Y.M., Mukherjee, S., Preiss, J., Covalent modification of Escherichia coli ADPglucose synthetase with 8-azido substrate analogs (1986) Arch. Biochem. Biophys, 244, pp. 585-595
  • Lee, Y.M., Preiss, J., Covalent modification of substrate-binding sites of Escherichia coli ADP-glucose synthetase. Isolation and structural characterization of 8-azido-ADP-glucose-incorporated peptides (1986) J. Biol. Chem, 261, pp. 1058-1064
  • McGuffin, L.J., Bryson, K., Jones, D.T., The PSIPRED protein structure prediction server (2000) Bioinformatics, 16, pp. 404-405
  • McGuffin, L.J., Jones, D.T., Improvement of the GenTHREADER method for genomic fold recognition (2003) Bioinformatics, 19, pp. 874-881
  • Meyer, C.R., Bork, J.A., Nadler, S., Yirsa, J., Preiss, J., Site-directed mutagenesis of a regulatory site of Escherichia coli ADP-glucose pyrophosphorylase: The role of residue 336 in allosteric behavior (1998) Arch. Biochem. Biophys, 353, pp. 152-159
  • Meyer, C.R., Ghosh, P., Nadler, S., Preiss, J., Cloning, expression, and sequence of an allosteric mutant ADPglucose pyrophosphorylase from Escherichia coli B (1993) Arch. Biochem. Biophys, 302, pp. 64-71
  • Meyer, C.R., Yirsa, J., Gott, B., Preiss, J., A kinetic study of site-directed mutants of Escherichia coli ADP-glucose pyrophosphorylase: The role of residue 295 in allosteric regulation (1998) Arch. Biochem. Biophys, 352, pp. 247-254
  • Morell, M.K., Bloom, M., Knowles, V., Preiss, J., Subunit structure of spinach leaf ADPglucose pyrophosphorylase (1987) Plant Physiol, 85, pp. 182-187
  • Narberhaus, F., Balsiger, S., Structure-function studies of Escherichia coli RpoH (σ32) by in vitro linker insertion mutagenesis (2003) J. Bacteriol, 185, pp. 2731-2738
  • Parsons, T.F., Preiss, J., Biosynthesis of bacterial glycogen. Isolation and characterization of the pyridoxal-P allosteric activator site and the ADP-glucose-protected pyridoxal-P binding site of Escherichia coli B ADP-glucose synthase (1978) J. Biol. Chem, 253, pp. 7638-7645
  • Preiss, J., Yung, S.G., Baecker, P.A., Regulation of bacterial glycogen synthesis (1983) Mol. Cell. Biochem, 57, pp. 61-80
  • Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., (1988) Numerical recipes in C: The art of scientific computing, , Cambridge University Press, New York, NY
  • Ramachandran, G.N., Ramakrishnan, C., Sasisekharan, V., Stereochemistry of polypeptide chain configurations (1963) J. Mol. Biol, 7, pp. 95-99
  • Rost, B., PHD: Predicting one-dimensional protein structure by profile-based neural networks (1996) Methods Enzymol, 266, pp. 525-539
  • Salamone, P.R., Kavakli, I.H., Slattery, C.J., Okita, T.W., Directed molecular evolution of ADP-glucose pyrophosphorylase (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 1070-1075
  • Sali, A., Blundell, T.L., Comparative protein modeling by satisfaction of spatial restraints (1993) J. Mol. Biol, 234, pp. 779-815
  • Sánchez, R., Sali, A., Comparative protein structure modeling (2000) Methods Mol. Biol, 143, pp. 97-129
  • Schwede, T., Kopp, J., Guex, N., Peitsch, M.C., SWISS-MODEL: An automated protein homology-modeling server (2003) Nucleic Acids Res, 31, pp. 3381-3385
  • Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Klenk, D.C., Measurement of protein using bicinchoninic acid (1985) Anal. Biochem, 150, pp. 76-85
  • Strange, R.E., Bacterial "glycogen" and survival (1968) Nature, 220, pp. 606-6077
  • Yep, A., Bejar, C.M., Ballicora, M.A., Dubay, J.R., Iglesias, A.A., Preiss, J., An assay for adenosine 5′-diphosphate (ADP)-glucose pyrophosphorylase that measures the synthesis of radioactive ADP-glucose with glycogen synthase (2004) Anal. Biochem, 324, pp. 52-59

Citas:

---------- APA ----------
Ballicora, M.A., Erben, E.D., Yazaki, T., Bertolo, A.L., Demonte, A.M., Schmidt, J.R., Aleanzi, M.,..., Preiss, J. (2007) . Identification of regions critically affecting kinetics and allosteric regulation of the Escherichia coli ADP-glucose pyrophosphorylase by modeling and pentapeptide-scanning mutagenesis. Journal of Bacteriology, 189(14), 5325-5333.
http://dx.doi.org/10.1128/JB.00481-07
---------- CHICAGO ----------
Ballicora, M.A., Erben, E.D., Yazaki, T., Bertolo, A.L., Demonte, A.M., Schmidt, J.R., et al. "Identification of regions critically affecting kinetics and allosteric regulation of the Escherichia coli ADP-glucose pyrophosphorylase by modeling and pentapeptide-scanning mutagenesis" . Journal of Bacteriology 189, no. 14 (2007) : 5325-5333.
http://dx.doi.org/10.1128/JB.00481-07
---------- MLA ----------
Ballicora, M.A., Erben, E.D., Yazaki, T., Bertolo, A.L., Demonte, A.M., Schmidt, J.R., et al. "Identification of regions critically affecting kinetics and allosteric regulation of the Escherichia coli ADP-glucose pyrophosphorylase by modeling and pentapeptide-scanning mutagenesis" . Journal of Bacteriology, vol. 189, no. 14, 2007, pp. 5325-5333.
http://dx.doi.org/10.1128/JB.00481-07
---------- VANCOUVER ----------
Ballicora, M.A., Erben, E.D., Yazaki, T., Bertolo, A.L., Demonte, A.M., Schmidt, J.R., et al. Identification of regions critically affecting kinetics and allosteric regulation of the Escherichia coli ADP-glucose pyrophosphorylase by modeling and pentapeptide-scanning mutagenesis. J. Bacteriol. 2007;189(14):5325-5333.
http://dx.doi.org/10.1128/JB.00481-07