Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A stationary, one-dimensional fluid model is presented to describe the interelectrode region of a nonfiltered vacuum arc operated with a background gas. The model includes the electron energy equation and the main elastic and inelastic atomic processes among metallic ions, electrons, and gas particles. To validate the model predictions an experimental study of the plasma-neutral gas structure, using a titanium (Ti) cathode and argon (Ar) as the background gas, is presented. The measured electron temperature and the experimental dependence on the pressure of neutral Ti and Ar spectroscopic emission lines are well reproduced, using a simple atomic model to interpret the plasma radiation emission. © 2006 American Institute of Physics.

Registro:

Documento: Artículo
Título:Hydrodynamic model for a vacuum arc operated with background gas: Theory and experimental validation
Autor:Grondona, D.; Kelly, H.; Minotti, F.O.
Filiación:Departamento de Física, Instituto de Física del Plasma (CONICET), Facultad de Ciencias Exactas y Naturales (UBA), Ciudad Universitaria Pabello'n I, 1428 Buenos Aires, Argentina
Palabras clave:Argon; Hydrodynamics; Ions; Mathematical models; Titanium; Electron energy equation; Metallic ions; Vacuum arc; Vacuum
Año:2006
Volumen:99
Número:4
DOI: http://dx.doi.org/10.1063/1.2168239
Título revista:Journal of Applied Physics
Título revista abreviado:J Appl Phys
ISSN:00218979
CODEN:JAPIA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00218979_v99_n4_p_Grondona.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218979_v99_n4_p_Grondona

Referencias:

  • Boxman, R.L., Goldsmith, S., (1989) IEEE Trans. Plasma Sci., 17, p. 705
  • Kutzner, J., Miller, H.C., (1989) IEEE Trans. Plasma Sci., 17, p. 688
  • Brown, I.G., (1994) Rev. Sci. Instrum., 65, p. 3061
  • Randhawa, H., (1988) Thin Solid Films, 167, p. 175
  • Puchert, M.K., Davis, C.A., MacKenzie, D.R., James, B.W., (1992) J. Vac. Sci. Technol. A, 10, p. 3493
  • Ji, X.H., Lau, S.P., Yu, G.Q., Zhong, W.H., Wang, Y.G., Tay, B.K., (2003) J. Phys. D, 36, p. 2543
  • Cyvień, J., Laurikaitis, M., Dudonis, J., (2005) Mater. Sci. Eng., B, 118, p. 238
  • Kimblin, C.W., (1974) J. Appl. Phys., 45, p. 5235
  • Meunier, J.L., Drouet, M.G., (1987) IEEE Trans. Plasma Sci., 15, p. 515
  • Boxman, R.L., Goldsmith, S., (1990) IEEE Trans. Plasma Sci., 18, p. 231
  • Kelly, H., Márquez, A., Minotti, F.O., (1998) IEEE Trans. Plasma Sci., 26, p. 1322
  • Gidalevich, E., Goldsmith, S., Boxman, R.L., (2000) J. Phys. D, 33, p. 2598
  • Demidenko, I.I., Lomino, N.S., Ovcharenko, V.D., Padalka, V.G., Poliakova, G.N., (1981) Sov. Phys. Tech. Phys., 22, p. 895
  • Martin, P.J., McKenzie, D.R., Netterfield, R.P., Swift, P., Filipczuk, S.W., Muller, K.H., Pacey, C.G., James, B., (1987) Thin Solid Films, 153, p. 91
  • Bergman, C., (1988) Surf. Coat. Technol., 36, p. 243
  • Sakaki, M., Sakakibara, T., (1994) IEEE Trans. Plasma Sci., 22, p. 1049
  • Bilek, M.M.M., Martin, P.J., McKenzie, D.R., (1998) J. Appl. Phys., 83, p. 2965
  • Kelly, H., Lepone, A., Márquez, A., (2001) J. Appl. Phys., 89, p. 1567
  • Grondona, D., Márquez, A., Minotti, F., Kelly, H., (2004) J. Appl. Phys., 96, p. 3077
  • Yushkov, G.Yu., Anders, A., Oks, E.M., Brown, I.G., (2000) J. Appl. Phys., 88, p. 5618
  • http://physics.nist.gov/cgi-bin/atdata; Reader, J., Corliss, C.H., (1997) Handbook of Chemistry and Physics, , 78th ed. (CRC, Boca Raton. FL
  • Schott, L., (1995) Plasma Diagnostics, , American Institute of Physics, New York
  • Wiese, W.L., Martin, G.A., (1981) AIP 50th Anniversary Physics Vade Mecum, , American Institute of Physics, New York
  • Kimblin, C.W., (1973) J. Appl. Phys., 44, p. 3074
  • Zhitomirsky, V.N., Kiniot, O., Alterkop, B., Boxman, R.L., Goldsmith, S., (1996) Surf. Coat. Technol., 263, p. 86
  • Brown, I.G., Anders, A., Anders, S., Dickinson, M.R., MacGill, R.A., Oks, E.M., (1996) Surf. Coat. Technol., 84, p. 550
  • Minotti, F., Kelly, H., Lepone, A., (2002) Plasma Sources Sci. Technol., 11, p. 294
  • Loeb, L.B., (1955) Basic Processes of Gaseous Electronics, , California University Press, Berkeley
  • Raizer, Y.P., (1991) Gas Discharge Physics, , Springer, Berlin
  • Riseberg, L.A., Parks, W.F., Schearer, L.D., (1973) Phys. Rev. A, 8, p. 1962
  • Lepone, A., Kelly, H., (2001) J. Phys. D, 34, p. 3043
  • Tao, K., Mao, D., Hopwood, J., (2002) J. Appl. Phys., 91, p. 4040

Citas:

---------- APA ----------
Grondona, D., Kelly, H. & Minotti, F.O. (2006) . Hydrodynamic model for a vacuum arc operated with background gas: Theory and experimental validation. Journal of Applied Physics, 99(4).
http://dx.doi.org/10.1063/1.2168239
---------- CHICAGO ----------
Grondona, D., Kelly, H., Minotti, F.O. "Hydrodynamic model for a vacuum arc operated with background gas: Theory and experimental validation" . Journal of Applied Physics 99, no. 4 (2006).
http://dx.doi.org/10.1063/1.2168239
---------- MLA ----------
Grondona, D., Kelly, H., Minotti, F.O. "Hydrodynamic model for a vacuum arc operated with background gas: Theory and experimental validation" . Journal of Applied Physics, vol. 99, no. 4, 2006.
http://dx.doi.org/10.1063/1.2168239
---------- VANCOUVER ----------
Grondona, D., Kelly, H., Minotti, F.O. Hydrodynamic model for a vacuum arc operated with background gas: Theory and experimental validation. J Appl Phys. 2006;99(4).
http://dx.doi.org/10.1063/1.2168239