El editor permite la descarga del artículo en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


We have studied the effects of accumulating cyclic electrical pulses of increasing amplitude on the non-volatile resistance state of interfaces made by sputtering a metal (Au, Pt) on top of the surface of a cuprate superconductor YBa2Cu3O7-δ. We have analyzed the influence of the number of applied pulses N on the relative amplitude of the remnant resistance change between the high (RH) and the low (R L) state [( = (R H-R L) / R L] at different temperatures (T). We show that the critical voltage (Vc) needed to produce a resistive switching (RS, i.e., > 0) decreases with increasing N or T. We also find a power law relation between the voltage of the pulses and the number of pulses N 0 required to produce a RS of = 0. This relation remains very similar to the Basquin equation used to describe the stress-fatigue lifetime curves in mechanical tests. This points out to the similarity between the physics of the RS, associated with the diffusion of oxygen vacancies induced by electrical pulses, and the propagation of defects in materials subjected to repeated mechanical stress. © 2013 AIP Publishing LLC.


Documento: Artículo
Título:Cyclic electric field stress on bipolar resistive switching devices
Autor:Schulman, A.; Acha, C.
Filiación:Laboratorio de Bajas Temperaturas, Departamento de Física, FCEyN-Universidad de Buenos Aires and IFIBA-CONICET, Pabellón I, C1428EHA Buenos Aires, Argentina
Palabras clave:Critical voltages; Diffusion of oxygens; Electric field stress; Power law relation; Relative amplitude; Resistance change; Resistive switching; Resistive switching devices; Electric fields; High temperature superconductors; Interface states; Switching systems; Stresses
Título revista:Journal of Applied Physics
Título revista abreviado:J Appl Phys


  • Burr, G.W., Kurdi, B.N., Scott, J.C., Lam, C.H., Gopalakrishnan, K., Shenoy, R.S., (2008) IBM J. Res. Dev., 52, p. 449. , 10.1147/rd.524.0449
  • Waser, R., Aono, M., (2007) Nature Mater., 6, p. 833. , 10.1038/nmat2023
  • Sawa, A., (2008) Mater. Today, 11, p. 28. , 10.1016/S1369-7021(08)70119-6
  • Kim, K.M., Jeong, D.S., Hwang, C.S., (2011) Nanotechnology, 22, p. 254002. , 10.1088/0957-4484/22/25/254002
  • Jeong, D.S., Thomas, R., Katiyar, R.S., Scott, J.F., Kohlstedt, H., Petraru, A., Hwang, C.S., (2012) Rep. Prog. Phys., 75, p. 076502. , 10.1088/0034-4885/75/7/076502
  • Schindler, C., Thermadam, S.C.P., Waser, R., Kozicki, M.N., (2007) IEEE Trans. Electron Devices, 54, p. 2762. , 10.1109/TED.2007.904402
  • Fujimoto, M., Koyama, H., Konagai, M., Hosoi, Y., Ishihara, K., Ohnishi, S., Awaya, N., (2006) Appl. Phys. Lett., 89, p. 223509. , 10.1063/1.2397006
  • Li, S.-L., Li, J., Zhang, Y., Zheng, D.-N., Tsukagoshi, K., (2011) Appl. Phys. A, 103, p. 21. , 10.1007/s00339-011-6313-4
  • Yang, J.J., Strukov, D.B., Stewart, D.R., (2013) Nat. Nanotechnol., 8, p. 13. , 10.1038/nnano.2012.240
  • (2011) Flash Memories, , edited by I. Stievano (InTech)
  • Rozenberg, M.J., Sánchez, M.J., Weht, R., Acha, C., Gomez-Marlasca, F., Levy, P., (2010) Phys. Rev. B, 81, p. 115101. , 10.1103/PhysRevB.81.115101
  • Suresh, S., (1998) Fatigue of Materials, , (Cambridge University Press)
  • Acha, C., Rozenberg, M.J., (2009) J. Phys.: Condens. Matter, 21, p. 045702. , 10.1088/0953-8984/21/4/045702
  • Acha, C., (2009) Physica B, 404, p. 2746. , 10.1016/j.physb.2009.06.111
  • Plecenik, A., Tomasek, M., Plecenik, T., Truchly, M., Noskovic, J., Zahoran, M., Rocha, T., Kus, P., (2010) Appl. Surf. Sci., 256, p. 5684. , 10.1016/j.apsusc.2010.03.018
  • Acha, C., (2011) J. Phys. D: Appl. Phys., 44, p. 345301. , 10.1088/0022-3727/44/34/345301
  • Plecenik, T., Tomasek, M., Belogolovskii, M., Truchl, M., Gregor, M., Noskovic, J., Zahoran, M., Plecenik, A., (2012) J. Appl. Phys., 111, p. 056106. , 10.1063/1.3691598
  • Schulman, A., Rozenberg, M.J., Acha, C., (2012) Phys. Rev. B, 86, p. 104426. , 10.1103/PhysRevB.86.104426
  • Ghenzi, N., Sánchez, M.J., Rozenberg, M.J., Stoliar, P., Marlasca, F.G., Rubi, D., Levy, P., (2012) J. Appl. Phys., 111, p. 084512. , 10.1063/1.4705283
  • Schutz, W., (1996) Eng. Fract. Mech., 54, p. 263. , 10.1016/0013-7944(95)00178-6
  • Moeckly, B.H., Lathrop, D.K., Buhrman, R.A., (1993) Phys. Rev. B, 47, p. 400. , 10.1103/PhysRevB.47.400
  • Lee, S.B., Chae, S.C., Chang, S.H., Lee, J.S., Seo, S., Kahng, B., Noh, T.W., (2008) Appl. Phys. Lett., 93, p. 212105. , 10.1063/1.3036532
  • Kohaut, J., (2000) Fatigue Fract. Eng. Mater. Struct., 23, p. 969. , 10.1046/j.1460-2695.2000.00276.x


---------- APA ----------
Schulman, A. & Acha, C. (2013) . Cyclic electric field stress on bipolar resistive switching devices. Journal of Applied Physics, 114(24).
---------- CHICAGO ----------
Schulman, A., Acha, C. "Cyclic electric field stress on bipolar resistive switching devices" . Journal of Applied Physics 114, no. 24 (2013).
---------- MLA ----------
Schulman, A., Acha, C. "Cyclic electric field stress on bipolar resistive switching devices" . Journal of Applied Physics, vol. 114, no. 24, 2013.
---------- VANCOUVER ----------
Schulman, A., Acha, C. Cyclic electric field stress on bipolar resistive switching devices. J Appl Phys. 2013;114(24).