Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nickel (Ni) based nanoparticles and nanochains were incorporated as fillers in polydimethylsiloxane (PDMS) elastomers and then these mixtures were thermally cured in the presence of a uniform magnetic field. In this way, macroscopically structured-anisotropic PDMS-Ni based magnetorheological composites were obtained with the formation of pseudo-chains-like structures (referred as needles) oriented in the direction of the applied magnetic field when curing. Nanoparticles were synthesized at room temperature, under air ambient atmosphere (open air, atmospheric pressure) and then calcined at 400°C (in air atmosphere also). The size distribution was obtained by fitting Small Angle X-ray Scattering (SAXS) experiments with a polydisperse hard spheres model and a Schulz-Zimm distribution, obtaining a size distribution centered at (10.0 ± 0.6) nm with polydispersivity given by σ = (8.0 ± 0.2) nm. The SAXS, X-ray powder diffraction, and Transmission Electron Microscope (TEM) experiments are consistent with single crystal nanoparticles of spherical shape (average particle diameter obtained by TEM: (12 ± 1) nm). Nickel-based nanochains (average diameter: 360 nm; average length: 3 μm, obtained by Scanning Electron Microscopy; aspect ratio = length/diameter ∼ 10) were obtained at 85°C and ambient atmosphere (open air, atmospheric pressure). The magnetic properties of Ni-based nanoparticles and nanochains at room temperature are compared and discussed in terms of surface and size effects. Both Ni-based nanoparticles and nanochains were used as fillers for obtaining the PDMS structured magnetorheological composites, observing the presence of oriented needles. Magnetization curves, ferromagnetic resonance (FMR) spectra, and strain-stress curves of low filler's loading composites (2% w/w of fillers) were determined as functions of the relative orientation with respect to the needles. The results indicate that even at low loadings it is possible to obtain magnetorheological composites with anisotropic properties, with larger anisotropy when using nanochains. For instance, the magnetic remanence, the FMR field, and the elastic response to compression are higher when measured parallel to the needles (about 30% with nanochains as fillers). Analogously, the elastic response is also anisotropic, with larger anisotropy when using nanochains as fillers. Therefore, all experiments performed confirm the high potential of nickel nanochains to induce anisotropic effects in magnetorheological materials. © 2013 AIP Publishing LLC.

Registro:

Documento: Artículo
Título:Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains
Autor:Landa, R.A.; Soledad Antonel, P.; Ruiz, M.M.; Perez, O.E.; Butera, A.; Jorge, G.; Oliveira, C.L.P.; Negri, R.M.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , Pabellón II, C1428EGA Buenos Aires, Argentina
Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro Atómico Bariloche, Instituto Balseiro, Universidad Nacional de Cuyo, Mendoza, Argentina
Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
Grupo de Fluidos Complexos, Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
Palabras clave:Applied magnetic fields; Ferromagnetic resonance (FMR); Magneto-rheological elastomers; Magnetorheological composites; Magnetorheological materials; Polydimethylsiloxane PDMS; Polydisperse hard spheres; Small angle X-ray scattering; Aspect ratio; Atmospheric pressure; Curing; Elastomers; Experiments; Ferromagnetic resonance; Magnetic anisotropy; Magnetic fields; Microchannels; Nanomagnetics; Nanoparticles; Needles; Nickel; Scanning electron microscopy; Silicones; Size distribution; Stress analysis; Synthesis (chemical); Transmission electron microscopy; X ray powder diffraction; Fillers
Año:2013
Volumen:114
Número:21
DOI: http://dx.doi.org/10.1063/1.4839735
Título revista:Journal of Applied Physics
Título revista abreviado:J Appl Phys
ISSN:00218979
CODEN:JAPIA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00218979_v114_n21_p_Landa.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218979_v114_n21_p_Landa

Referencias:

  • Kchit, N., Bossis, G., (2008) J. Phys. Condens. Matter, 20, p. 204136. , 10.1088/0953-8984/20/20/204136
  • Mietta, J.L., Ruiz, M.M., Antonel, P.S., Perez, O.E., Butera, A., Jorge, G., Martín Negri, R., (2012) Langmuir, 28, p. 6985. , 10.1021/la204823k
  • Antonel, P.S., Negri, R.M., Leyva, A.G., Jorge, G.A., (2012) Physica B: Condens. Matter, 407, p. 3165. , 10.1016/j.physb.2011.12.054
  • Antonel, P.S., Jorge, G., Perez, O.E., Butera, A., Gabriela Leyva, A., Martín Negri, R., (2011) J. Appl. Phys., 110, p. 043920. , 10.1063/1.3624602
  • Ruiz, M.M., Antonel, P.S., Perez, O.E., Martín Negri, R., Jorge, G., (2013) J. Magn. Magn. Mater., 327, p. 11. , 10.1016/j.jmmm.2012.09.020
  • Zeng, J., Guo, Y., Li, Y., Zhu, J., Li, J., (2013) J. Appl. Phys., 113, pp. 17A919. , 10.1063/1.4796046
  • Chen, L., Jerrams, S., (2011) J. Appl. Phys., 110, p. 013513. , 10.1063/1.3603052
  • Lorenzo, D., Fragouli, D., Bertoni, G., Innocenti, C., Anyfantis, G.C., Cozzoli, P.D., Cingolani, R., (2012) J. Appl. Phys., 112, p. 083927. , 10.1063/1.4759328
  • Høyer, H., Knaapila, M., Kjelstrup-Hansen, J., Helgesen, G., (2012) J. Appl. Phys., 112, p. 094324. , 10.1063/1.4759447
  • Semeriyanov, F., Chervanyov, A.I., Jurk, R., Subramaniam, K., Konig, S., Roscher, M., Das, A., Heinrich, G., (2013) J. Appl. Phys., 113, p. 103706. , 10.1063/1.4794835
  • MacIas, J.D., Ordonez-Miranda, J., Alvarado-Gil, J.J., (2012) J. Appl. Phys., 112, p. 124910. , 10.1063/1.4770473
  • Diguet, G., Beaugnon, E., Cavaille, J.Y., (2009) J. Magn. Magn. Mater., 321, p. 396. , 10.1016/j.jmmm.2008.08.112
  • Keshoju, K., Sun, L., (2009) J. Appl. Phys., 105, p. 023515. , 10.1063/1.3068173
  • Denver, H., Heiman, T., Martin, E., Gupta, A., Borca-Tasciuc, D.-A., (2009) J. Appl. Phys., 106, p. 64909. , 10.1063/1.3224966
  • Thompson Mefford, O., Carroll, M.R.J., Vadala, M.L., Goff, J.D., Mejia-Ariza, R., Saunders, M., Woodward, R.C., Riffle, J.S., (2008) Chem. Mater., 20, p. 2184. , 10.1021/cm702730p
  • Stepanov, V.G., Abramchuk, S.S., Grishin, D.A., Nikitin, L.V., Yu. Kramarenko, E., Khokhlov, A.R., (2007) Polymer, 48, p. 488. , 10.1016/j.polymer.2006.11.044
  • Filipcsei, G., Csetneki, I., Szilágyi, A., Zrínyi, M., (2007) Adv. Polym. Sci., 206, p. 137. , 10.1007/12-2006-104
  • Coquelle, E., Bossis, G., Szabo, D., Giulieri, F., (2006) J. Mater. Sci., 41, p. 5941. , 10.1007/s10853-006-0329-8
  • Lappas Zorko, A., Wortham, E., Das, R.N., Giannelis, E.P., Cevc, P., Arc, D., (2005) Chem. Mater., 17, p. 1199. , 10.1021/cm048744p
  • Farshad, M., Benine, A., (2004) Polym. Test., 23, p. 347. , 10.1016/S0142-9418(03)00103-X
  • Jolly, M.R., Carlson, J.D., Muñoz, B.C., (1996) Smart Mater. Struct., 5, p. 607. , 10.1088/0964-1726/5/5/009
  • Amir, S.M., Gupta, M., Potdar, S., Gupta, A., Stahn, J., (2013) J. Appl. Phys., 114, p. 024307. , 10.1063/1.4813135
  • Biziere, N., Clochard, M.-C., Do Chung, P., Wegrowe, J.-E., Viret, M., (2013) J. Appl. Phys., 113, p. 173910. , 10.1063/1.4803702
  • Lindroos, J., Fenning, D.P., Backlund, D.J., Verlage, E., Gorgulla, A., Estreicher, S.K., Savin, H., Buonassisi, T., (2013) J. Appl. Phys., 113, p. 204906. , 10.1063/1.4807799
  • Rosenthal, L., Greve, H., Zaporojtchenko, V., Strunskus, T., Faupel, F., Bonitz, M., (2013) J. Appl. Phys., 114, p. 044305. , 10.1063/1.4816252
  • Sprouster, D.J., Giulian, R., Araujo, L.L., Kluth, P., Johannessen, B., Kirby, N., Ridgway, M.C., (2011) J. Appl. Phys., 109, p. 113517. , 10.1063/1.3594751
  • Lahiri, A., Tadisina, Z., (2010) Mater. Chem. Phys., 124, p. 41. , 10.1016/j.matchemphys.2010.07.019
  • Omrani, A.D., Bousnina, M.A., Smiri, L.S., Taibi, M., Leone, P., Schoenstein, F., Jouini, N., (2010) Mater. Chem. Phys., 123, p. 821. , 10.1016/j.matchemphys.2010.05.068
  • Wang, D.-P., Sun, D.-B., Yu, H.-Y., Qiu, Z.-G., Meng, H.-M., (2009) Mater. Chem. Phys., 113, p. 227. , 10.1016/j.matchemphys.2008.07.086
  • Chen, Y., Peng, D.-L., Lin, D., Luo, X., (2007) Nanotechnology, 18, p. 505703. , 10.1088/0957-4484/18/50/505703
  • Park, J.W., Chae, E.H., Kim, S.H., Lee, J.H., Kim, J.W., Yoonb, S.M., Choi, J.-Y., (2006) Mater. Chem. Phys., 97, p. 371. , 10.1016/j.matchemphys.2005.08.028
  • Kim, K.H., Park, H.C., Lee, S.D., Hwa, W.J., Hong, S.-S., Lee, G.-D., Park, S.S., (2005) Mater. Chem. Phys., 92, p. 234. , 10.1016/j.matchemphys.2005.01.017
  • Hou, Y., Kondoh, H., Ohta, T., Gao, S., (2005) Appl. Surf. Sci., 241, p. 218. , 10.1016/j.apsusc.2004.09.045
  • Kim, K.H., Lee, Y.B., Choi, E.Y., Park, H.C., Park, S.S., (2004) Mater. Chem. Phys., 86, p. 420. , 10.1016/j.matchemphys.2004.04.011
  • Duan, Y., Li, J., (2004) Mater. Chem. Phys., 87, p. 452. , 10.1016/j.matchemphys.2004.06.034
  • Lin, S.W., Chang, S.C., Liu, R.S., Hu, S.F., Jan, N.T., (2004) J. Magn. Magn. Mater., 282, p. 28. , 10.1016/j.jmmm.2004.05.023
  • Amekura, H., Umeda, N., Takeda, Y., Lu, J., Kishimoto, N., (2004) Appl. Phys. Lett., 85, p. 1015. , 10.1063/1.1769083
  • Sidhaye, D.S., Bala, T., Srinath, S., Srikanth, H., Poddar, P., Sastry, M., Prasad, B.L.V., (2009) J. Phys. Chem. C, 113, p. 3426. , 10.1021/jp807542w
  • Alagiri, M., Muthamizhchelvan, C., Ponnusamy, S., (2011) Mater. Lett., 65, p. 1565. , 10.1016/j.matlet.2011.02.072
  • Li, Y.D., Li, C.W., Wang, H.R., Li, L.Q., Qian, Y.T., (1999) Mater. Chem. Phys., 59, p. 88. , 10.1016/S0254-0584(99)00015-2
  • Glatter, O., Kratky, O., (1982) Small Angle X-ray Scattering, , (Academic Press, London)
  • Kinning, D.J., Thomas, E.L., (1984) Macromolecules, 17, p. 1712. , 10.1021/ma00139a013
  • Pedersen, J.S., (1997) Adv. Colloid Interface Sci., 70, p. 171. , 10.1016/S0001-8686(97)00312-6
  • Negri, R.M., Rodriguez, S.D., Bernik, D.L., Molina, F.V., Pilosof, A., (2010) J. Appl. Phys., 107, p. 113703. , 10.1063/1.3410799
  • Wang, Y., Zhu, Q., Zhang, H., (2006) J. Mater. Chem., 12, p. 1212. , 10.1039/B517176H
  • Lu, H.M., Zheng, W.T., Jiang, Q., (2007) J. Phys. D: Appl. Phys., 40, p. 320. , 10.1088/0022-3727/40/2/006
  • Blaskov, V., Petkov, V., Rusanov, V., Martinez, L.M., Martinez, B., Muñoz, J.S., Mikhov, M., (1996) J. Magn. Magn. Mater., 162, p. 331. , 10.1016/S0304-8853(96)00277-6
  • Leslie-Pelecky, D.L., Rieke, R.D., (1996) Chem. Mater., 8, p. 1770. , 10.1021/cm960077f
  • Butera, A., Álvarez, N., Jorge, G., Ruiz, M.M., Mietta, J.L., Negri, R.M., (2012) Phys. Rev. B, 86, p. 144424. , 10.1103/PhysRevB.86.144424
  • Butera, A., (2006) Eur. Phys. J. B, 52, p. 297. , 10.1140/epjb/e2006-00296-4
  • Butera, A., Kang, S.S., Nikles, D.E., Harrell, J.W., (2004) Physica B, 354, p. 108. , 10.1016/j.physb.2004.09.029
  • Vargas, J.M., Zysler, R.D., Butera, A., (2007) Appl. Surf. Sci., 254, p. 274. , 10.1016/j.apsusc.2007.07.051
  • http://dx.doi.org/10.1063/1.4839735, See supplementary material at E-JAPIAU-114-013347 for details of the implemented SAXS model

Citas:

---------- APA ----------
Landa, R.A., Soledad Antonel, P., Ruiz, M.M., Perez, O.E., Butera, A., Jorge, G., Oliveira, C.L.P.,..., Negri, R.M. (2013) . Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains. Journal of Applied Physics, 114(21).
http://dx.doi.org/10.1063/1.4839735
---------- CHICAGO ----------
Landa, R.A., Soledad Antonel, P., Ruiz, M.M., Perez, O.E., Butera, A., Jorge, G., et al. "Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains" . Journal of Applied Physics 114, no. 21 (2013).
http://dx.doi.org/10.1063/1.4839735
---------- MLA ----------
Landa, R.A., Soledad Antonel, P., Ruiz, M.M., Perez, O.E., Butera, A., Jorge, G., et al. "Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains" . Journal of Applied Physics, vol. 114, no. 21, 2013.
http://dx.doi.org/10.1063/1.4839735
---------- VANCOUVER ----------
Landa, R.A., Soledad Antonel, P., Ruiz, M.M., Perez, O.E., Butera, A., Jorge, G., et al. Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains. J Appl Phys. 2013;114(21).
http://dx.doi.org/10.1063/1.4839735