El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


A model for the dependence of the electrical conductance, G, with the strain induced by external mechanical stress in conducting particles-polymer composites is presented. The model assumes that the percolation probability between neighboring particles must depart from a scale-invariant behavior but saturate at moderated-high strains, reaching percolation path's saturation, with sigmoid dependence. This dependence is obtained by proposing a dynamic picture where contacts or bonds between neighboring particles are created but also destructed when a stress is applied and relatively moderated or high strains, ε, are produced in the composite. The electrical conductance of prepared graphite-polydimethylsiloxane composites were measured as function of the applied pressure and fitted by the presented model. The elastic response to the uniaxial compression was studied using a texture analyzer. The possibility of nonuniversal effects in the conduction critical exponent, t, was taken into account. It is concluded that the saturation of the response in the G versus ε plots cannot be assigned to nonuniversal behavior of the exponent t, or to saturation of the elastic response. On the other hand, the presented model accounts for all the main experimental features observed in these systems and for previously reported data of elastomer composites. The simulated behavior of the piezoresistivity coefficient is also in qualitative agreement with previous reports. © 2010 American Institute of Physics.


Documento: Artículo
Título:A model for the dependence of the electrical conductance with the applied stress in insulating-conducting composites
Autor:Negri, R.M.; Rodriguez, S.D.; Bernik, D.L.; Molina, F.V.; Pilosof, A.; Perez, O.
Filiación:Departamento de Química Inorgánica, Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
Ciudad Universitaria, Pabellón II, INQUIMAE, C1428EGA, Buenos Aires, Argentina
Palabras clave:Applied pressure; Applied stress; Conducting composites; Conducting particles; Critical exponent; Elastic response; Elastomer composites; Electrical conductance; High strains; Mechanical stress; Nonuniversal effects; Percolation path; Percolation probability; Piezoresistivity coefficient; Polymer composite; Scale-invariant; Simulated behaviors; Texture analyzers; Uni-axial compression; Electric conductance; Silicones; Solvents; Strain; Stresses
Título revista:Journal of Applied Physics
Título revista abreviado:J Appl Phys


  • Kchit, N., Bossis, G., Piezoresistivity of magnetorheological elastomers (2008) Journal of Physics Condensed Matter, 20 (20), p. 204136. , DOI 10.1088/0953-8984/20/20/204136, PII S0953898408770073
  • Sieber, A., Valdastri, P., Houston, K., Eder, C., Tonet, O., Menciassi, A., Dario, P., A novel haptic platform for real time bilateral biomanipulation with a MEMS sensor for triaxial force feedback (2008) Sensors and Actuators, A: Physical, 142 (1), pp. 19-27. , DOI 10.1016/j.sna.2007.03.018, PII S0924424707001963
  • Jia, Y.-M., Wang, F.-F., Zhao, X.-Y., Luo, H.-S., Or, S.W., Chan, H.L.W., (2008) Compos. Sci. Technol., 68, p. 1440. , CSTCEH 0266-3538. 10.1016/j.compscitech.2007.10.046
  • Wang, H., Zhang, H., Zhao, W., Zhang, W., Chen, G., Preparation of polymer/oriented graphite nanosheet composite by electric field-inducement (2008) Composites Science and Technology, 68 (1), pp. 238-243. , DOI 10.1016/j.compscitech.2007.04.012, PII S0266353807001509
  • Antal, M., Filipcsei, G., Zrinyi, M., Direct observation of Quincke rotation of disk shaped polymer composites in a uniform DC electric field (2007) Composites Science and Technology, 67 (13), pp. 2884-2885. , DOI 10.1016/j.compscitech.2007.03.027, PII S0266353807001303
  • Zhang, B., Xie, C., Hu, J., Wang, H., Gui, Y., Novel 1-3 metal nanoparticle/polymer composites induced by hybrid external fields (2006) Composites Science and Technology, 66 (11-12), pp. 1558-1563. , DOI 10.1016/j.compscitech.2005.11.020, PII S0266353805004513
  • Song, Y., Zheng, Q., Effect of voltage on the conduction of a high-density polyethylene/ carbon black composite at the NTC region (2006) Composites Science and Technology, 66 (7-8), pp. 907-912. , DOI 10.1016/j.compscitech.2005.07.041, PII S0266353805003210
  • Varga, Z., Filipcsei, G., Zrinyi, M., Smart composites with controlled anisotropy (2005) Polymer, 46 (18), pp. 7779-7787. , DOI 10.1016/j.polymer.2005.03.102, PII S0032386105004933, Stimuli Responsive Polymers
  • Arshak, K., Moore, E., Cavanagh, L., Harris, J., McConigly, B., Cunniffe, C., Lyons, G., Clifford, S., Determination of the electrical behaviour of surfactant treated polymer/carbon black composite gas sensors (2005) Composites Part A: Applied Science and Manufacturing, 36 (4), pp. 487-491. , DOI 10.1016/j.compositesa.2004.10.015, PII S1359835X04002532, Filled and Nano-Composite Polymer Materials
  • Kim, G.H., Thermo-physical responses of polymeric composites tailored by electric field (2005) Composites Science and Technology, 65 (11-12), pp. 1728-1735. , DOI 10.1016/j.compscitech.2005.02.013, PII S0266353805000655
  • Foygel, M., Morris, R.D., Anez, D., French, S., Sobolev, V.L., Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity (2005) Physical Review B - Condensed Matter and Materials Physics, 71 (10), pp. 1-8. , pdf&id=PRBMDO000071000010104201000001&idtype=cvips, DOI 10.1103/PhysRevB.71.104201, 104201
  • Prasse, T., Cavaille, J.-Y., Bauhofer, W., Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment (2003) Composites Science and Technology, 63 (13), pp. 1835-1841. , DOI 10.1016/S0266-3538(03)00019-8
  • Johner, N., Grimaldi, C., Maeder, T., Ryser, P., (2009) Phys. Rev. e, 79, p. 020104. , PLEEE8 1063-651X, (R). 10.1103/PhysRevE.79.020104
  • Balberg, I., (2009) J. Phys. D: Appl. Phys., 42, p. 064003. , JPAPBE 0022-3727. 10.1088/0022-3727/42/6/064003
  • Bauhofer, W., Kovacs, J.Z., (2009) Compos. Sci. Technol., 69, p. 1486. , CSTCEH 0266-3538. 10.1016/j.compscitech.2008.06.018
  • Johner, N., Grimaldi, C., Balberg, I., Ryser, P., (2008) Phys. Rev. B, 77, p. 174204. , PRBMDO 0163-1829. 10.1103/PhysRevB.77.174204
  • Johner, N., Ryser, P., Grimaldi, C., Balberg, I., (2007) Phys. Rev. B, 75, p. 104204. , PRBMDO 0163-1829. 10.1103/PhysRevB.75.104204
  • Kovacs, J.Z., Velagala, B.S., Schulte, K., Bauhofer, W., Two percolation thresholds in carbon nanotube epoxy composites (2007) Composites Science and Technology, 67 (5), pp. 922-928. , DOI 10.1016/j.compscitech.2006.02.037, PII S0266353806003290, Carbon Nanotube (CNT) - Polymer Composites
  • Li, J., Kim, J.-K., Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets (2007) Composites Science and Technology, 67 (10), pp. 2114-2120. , DOI 10.1016/j.compscitech.2006.11.010, PII S0266353806004386
  • Grimaldi, C., Balberg, I., Tunneling and nonuniversality in continuum percolation systems (2006) Physical Review Letters, 96 (6), p. 066602. , PhysRevLett.96.066602&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.96.066602
  • Vionnet-Menot, S., Grimaldi, C., Maeder, T., Strassler, S., Ryser, P., Tunneling-percolation origin of nonuniversality: Theory and experiments (2005) Physical Review B - Condensed Matter and Materials Physics, 71 (6), pp. 0642011-06420112. , DOI 10.1103/PhysRevB.71.064201, 064201
  • Martin, C.A., Sandler, J.K.W., Shaffer, M.S.P., Schwarz, M.-K., Bauhofer, W., Schulte, K., Windle, A.H., Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites (2004) Composites Science and Technology, 64 (SPEC. ISS.), pp. 2309-2316. , DOI 10.1016/j.compscitech.2004.01.025, PII S0266353804000703
  • Toker, D., Azulay, D., Shimoni, N., Balberg, I., Millo, O., (2003) Phys. Rev. B, 68, p. 041403. , PRBMDO 0163-1829, (R). 10.1103/PhysRevB.68.041403
  • Balberg, I., A comprehensive picture of the electrical phenomena in carbon black-polymer composites (2002) Carbon, 40 (2), pp. 139-143. , DOI 10.1016/S0008-6223(01)00164-6, PII S0008622301001646
  • Pike, G.E., Seager, C.H., (1974) Phys. Rev. B, 10, p. 1421. , PRBMDO 0163-1829. 10.1103/PhysRevB.10.1421
  • Tomer, V., Randall, C.A., (2008) J. Appl. Phys., 104, p. 074106. , JAPIAU 0021-8979. 10.1063/1.2990073
  • Ambrosetti, G., Johner, N., Grimaldi, C., Maeder, T., Ryser, P., Danani, A., (2009) J. Appl. Phys., 106, p. 016103. , JAPIAU 0021-8979. 10.1063/1.3159040
  • Hernández, J.J., García-Gutírrez, M.C., Nogales, A., Rueda, D.R., Kwiatkowska, M., Szymczyk, A., Roslaniec, Z., Ezquerra, T.A., (2009) Compos. Sci. Technol., 69, p. 1867. , CSTCEH 0266-3538. 10.1016/j.compscitech.2009.04.002
  • Li, C., Thostenson, E.T., Chou, T.-W., (2008) Compos. Sci. Technol., 68, p. 1227. , CSTCEH 0266-3538. 10.1016/j.compscitech.2008.01.006
  • Hatchett, D.W., Josowicz, M., Composites of intrinsically conducting polymers as sensing nanomaterials (2008) Chemical Reviews, 108 (2), pp. 746-769. , DOI 10.1021/cr068112h
  • Zhang, R., Baxendale, M., Peijs, T., (2007) Phys. Rev. B, 76, p. 195433. , PRBMDO 0163-1829. 10.1103/PhysRevB.76.195433
  • Wang, Z., Lu, M., Li, H.-L., Guo, X.-Y., SWNTs-polystyrene composites preparations and electrical properties research (2006) Materials Chemistry and Physics, 100 (1), pp. 77-81. , DOI 10.1016/j.matchemphys.2005.12.008, PII S0254058405008503
  • Yamaguchi, K., Busfield, J.J.C., Thomas, A.G., (2003) J. Polym. Sci., Part B: Polym. Phys., 41, p. 2079. , JPBPEM 0887-6266. 10.1002/polb.10571
  • Flandin, L., Hiltner, A., Baer, E., (2001) Polymer, 42, p. 827. , POLMAG 0032-3861. 10.1016/S0032-3861(00)00324-4
  • Del Prete, Z., Monteleone, L., Steindler, R., (2001) Rev. Sci. Instrum., 72, p. 1548. , RSINAK 0034-6748. 10.1063/1.1340561
  • Hussain, M., Choa, Y.-H., Niihara, K., Fabrication process and electrical behavior of novel pressure-sensitive composites (2001) Composites - Part A: Applied Science and Manufacturing, 32 (12), pp. 1689-1696. , DOI 10.1016/S1359-835X(01)00035-5, PII S1359835X01000355
  • Krassow, H., Campabadal, F., Lora-Tamayo, E., (2000) Sens. Actuators, A, 82, p. 229. , SAAPEB 0924-4247. 10.1016/S0924-4247(99)00334-9
  • Aneli, J.N., Zaikov, G.E., Khananashvili, L.M., (1999) J. Appl. Polym. Sci., 74, p. 601. , JAPNAB 0021-8995. 10.1002/(SICI)1097-4628(19991017)74:3<601::AID- APP143.0.CO;2-K
  • Carmona, F., Canet, R., Delhaes, P., (1987) J. Appl. Phys., 61, p. 2550. , JAPIAU 0021-8979. 10.1063/1.337932
  • McLachlan, D.S., Sauti, G., Chiteme, C., (2007) Phys. Rev. B, 76, p. 014201. , PRBMDO 0163-1829. 10.1103/PhysRevB.76.014201
  • Chiteme, C., McLachlan, D.S., Sauti, G., (2007) Phys. Rev. B, 75, p. 094202. , PRBMDO 0163-1829. 10.1103/PhysRevB.75.094202
  • Meier, J.G., Mani, J.W., Klüppel, M., (2007) Phys. Rev. B, 75, p. 054202. , PRBMDO 0163-1829. 10.1103/PhysRevB.75.054202
  • Grimmett, G.R., (1989) Percolation, , (Springer, New York)
  • Hunt, A.G., (2005) Percolation Theory for Flow in Porous Media, 674. , Lect. Notes Phys. (Springer, Berlin)
  • Trionfi, A., Wang, D.H., Jacobs, J.D., Tan, L.-S., Vaia, R.A., Hsu, J.W.P., (2009) Phys. Rev. Lett., 102, p. 116601. , PRLTAO 0031-9007. 10.1103/PhysRevLett.102.116601
  • Koehler, M., Canestraro, C.D., Schnitzler, C., Oliveira, M.M., Zarbin, A.J.G., Roman, L.S., Da Luz, M.G.E., (2007) EPL, 79, p. 47011. , EULEEJ 0295-5075. 10.1209/0295-5075/79/47011
  • García Molina, R., Louis, E., Pla, O., Guinea, F., (1991) Phys. Rev. B, 44, p. 9704. , PRBMDO 0163-1829. 10.1103/PhysRevB.44.9704
  • Kogut, P.M., Straley, J.P., (1979) J. Phys. C, 12, p. 2151. , JPSOAW 0022-3719. 10.1088/0022-3719/12/11/023
  • Kobylañski, J., Ṕrez, O.E., Pilosof, A.M.R., (2004) Thermochim. Acta, 411, p. 81. , THACAS 0040-6031. 10.1016/j.tca.2003.08.002
  • Perez, O.E., Wargon, V., M.R. Pilosof, A., Gelation and structural characteristics of incompatible whey proteins/hydroxypropylmethylcellulose mixtures (2006) Food Hydrocolloids, 20 (7), pp. 966-974. , DOI 10.1016/j.foodhyd.2005.11.005, PII S0268005X05002225
  • Capitani, C., Perez, Oscar.E., Pacheco, B., Teresa, M., Pilosof, A.M.R., Influence of complexing carboxymethylcellulose on the thermostability and gelation of α-lactalbumin and β-lactoglobulin (2007) Food Hydrocolloids, 21 (8), pp. 1344-1354. , DOI 10.1016/j.foodhyd.2006.10.022, PII S0268005X06002487
  • Ṕrez, O., Pilosof, A.M.R., (2003) Food Colloids, Biopolymers and Materials, p. 119. , edited by E. Dickinson and T. Van Vliet (The Royal Society of Chemistry, Cambridge, UK)


---------- APA ----------
Negri, R.M., Rodriguez, S.D., Bernik, D.L., Molina, F.V., Pilosof, A. & Perez, O. (2010) . A model for the dependence of the electrical conductance with the applied stress in insulating-conducting composites. Journal of Applied Physics, 107(11).
---------- CHICAGO ----------
Negri, R.M., Rodriguez, S.D., Bernik, D.L., Molina, F.V., Pilosof, A., Perez, O. "A model for the dependence of the electrical conductance with the applied stress in insulating-conducting composites" . Journal of Applied Physics 107, no. 11 (2010).
---------- MLA ----------
Negri, R.M., Rodriguez, S.D., Bernik, D.L., Molina, F.V., Pilosof, A., Perez, O. "A model for the dependence of the electrical conductance with the applied stress in insulating-conducting composites" . Journal of Applied Physics, vol. 107, no. 11, 2010.
---------- VANCOUVER ----------
Negri, R.M., Rodriguez, S.D., Bernik, D.L., Molina, F.V., Pilosof, A., Perez, O. A model for the dependence of the electrical conductance with the applied stress in insulating-conducting composites. J Appl Phys. 2010;107(11).