Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The nozzle current-voltage characteristic for a cutting arc is presented in this work. The measurements are reported using a high energy density cutting arc torch with a nozzle bore radius of 0.5 mm. The arc current was fixed at 30 A while the plenum pressure and the oxygen gas mass flow rate were varied in the range of 0.55-0.65 MPa and 0.32-0.54 g s-1, respectively. The results show a very low electron density and the lack of electron attachment at the plasma boundary layer. No ion saturation current was found. For the smallest mass flow rate value gas breakdown was found for a biasing nozzle potential close to that of the cathode, but no evidence of such breakdown was found for the larger mass flow rate values. Using an expression for the ion speed at the entry of the collisional sheath formed between the nonequilibrium plasma and the negatively biased nozzle wall together with a generalized Saha equation coupled to the ion branch of the characteristic, the radial profile of the electron temperature, the spatial distribution of the plasma density at the plasma boundary, and the sheath thickness were obtained. In particular, the obtained thickness value at the breakdown condition was in good agreement with that obtained from the oxygen Paschen's curve. An electron temperature of about 4700-5700 K and a corresponding plasma density of the order of 1019 - 1020 m-3 were found close to the nozzle wall. A physical interpretation on the origin of the double-arcing phenomenon is presented, that explains why the double-arcing (that it is established when the sheath breaks down) appears at low values of the gas mass flow. © 2009 American Institute of Physics.

Registro:

Documento: Artículo
Título:On the physical origin of the nozzle characteristic and its connection with the double-arcing phenomenon in a cutting torch
Autor:Prevosto, L.; Kelly, H.; Mancinelli, B.
Filiación:Universidad Tecnológica Nacional, Regional Venado Tuerto, Las Heras 644, Venado Tuerto (2600), Pcia. Santa Fe, Argentina
Departamento de Física, Instituto de Física del Plasma (CONICET), Ciudad Universitaria, Pab. I, Buenos Aires 1428, Argentina
Palabras clave:Arc current; Arcing phenomena; Collisional sheath; Cutting torch; Electron attachment; Electron densities; Gas breakdown; Gas mass flow; High energy densities; Ion saturation current; Mass flow rate; Nonequilibrium plasmas; Nozzle wall; Oxygen gas; Physical interpretation; Plasma boundary; Plasma boundary layer; Plenum pressure; Radial profiles; Saha equation; Sheath thickness; Spatial distribution; Thickness value; Cavity resonators; Flow rate; Ions; Mass transfer; Nozzles; Oxygen; Pipe flow; Plasma density; Plasma jets; Plasma sheaths; Size distribution; Electron temperature
Año:2009
Volumen:105
Número:1
DOI: http://dx.doi.org/10.1063/1.3041636
Título revista:Journal of Applied Physics
Título revista abreviado:J Appl Phys
ISSN:00218979
CODEN:JAPIA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218979_v105_n1_p_Prevosto

Referencias:

  • Ramakrishnan, S., Gershenzon, M., Polivka, F., Kearny, T.N., Rogozinsky, M.W., (1997) IEEE Trans. Plasma Sci., 25, p. 937. , 0093-3813 10.1109/27.649600
  • Girard, L., Teulet, Ph., Razafinimanana, M., Gleizes, A., Camy-Peyret, F., Baillot, E., Richard, F., (2006) J. Phys. D: Appl. Phys., 39, p. 1543. , 0022-3727 10.1088/0022-3727/39/8/014
  • Freton, P., Gonzalez, J.J., Gleizes, A., Camy Peyret, F., Caillibotte, G., Delzenne, M., (2002) J. Phys. D: Appl. Phys., 35, p. 115. , 0022-3727 10.1088/0022-3727/35/2/304
  • Freton, P., Gonzalez, J.J., Gleizes, A., Camy Peyret, F., Caillibotte, G., Delzenne, M., (2002) J. Phys. D: Appl. Phys., 35, p. 115. , 0022-3727 10.1088/0022-3727/35/2/304
  • Pardo, C., González-Aguilar, J., Rodríguez Yunta, A., Calderón, M.A.G., (1999) J. Phys. D: Appl. Phys., 32, p. 2181. , 0022-3727 10.1088/0022-3727/32/17/308
  • González-Aguilar, J., Pardo Sanjurjo, C., Rodríguez Yunta, A., García Calderón, M.A., (1999) IEEE Trans. Plasma Sci., 27, p. 264. , 0093-3813 10.1109/27.763132
  • Prevosto, L., Kelly, H., Mancinelli, B., (2008) IEEE Trans. Plasma Sci., 36, p. 263. , 0093-3813 10.1109/TPS.2007.914176
  • Prevosto, L., Kelly, H., Mancinelli, B., (2008) IEEE Trans. Plasma Sci., 36, p. 271. , 0093-3813 10.1109/TPS.2007.914182
  • Nemchinsky, V.A., Severance, W.S., (2006) J. Phys. D: Appl. Phys., 39, p. 423. , 0022-3727 10.1088/0022-3727/39/22/R01
  • Boulos, M., Fauchais, P., Pfender, E., (1994) Thermal Plasmas, Fundamentals and Applications, , (Plenum, New York)
  • Ghorui, S., Heberlein, J.V.R., Pfender, P.E., (2007) J. Phys. D: Appl. Phys., 40, p. 1966. , 0022-3727 10.1088/0022-3727/40/7/020
  • Hill, R.J., Jones, G.R., (1979) J. Phys. D: Appl. Phys., 12, p. 1707. , 0022-3727 10.1088/0022-3727/12/10/013
  • George, D.W., Richards, P.H., (1968) Br. J. Appl. Phys., 1, p. 1171
  • Nemchinsky, V.A., (1998) J. Phys. D: Appl. Phys., 31, p. 3102. , 0022-3727 10.1088/0022-3727/31/21/016
  • Raizer, P., (1991) Gas Discharge Physics, , (Springer, Berlin)
  • Hackam, R., (1969) J. Phys. B, 2, p. 216. , 0022-3700
  • Blank, J.L., (1968) Phys. Fluids, 11, p. 1686
  • Franklin, R.N., (2004) J. Phys. D: Appl. Phys., 37, p. 1342. , 0022-3727 10.1088/0022-3727/37/9/007
  • Franklin, R.N., (2003) J. Phys. D: Appl. Phys., 36, p. 309. , 0022-3727 10.1088/0022-3727/36/22/R01
  • Franklin, R.N., (2003) J. Phys. D: Appl. Phys., 36, p. 2821. , 0022-3727 10.1088/0022-3727/36/22/008
  • Sheridan, T.E., Goree, J., (1991) Phys. Fluids B, 3, p. 2796. , 0899-8221 10.1063/1.859987
  • Anderson, H.L., (1989) A Physicist's Desk Reference, , 2nd ed. (AIP, New York)
  • Franklin, R.N., (2002) IEEE Trans. Plasma Sci., 30, p. 352. , 0093-3813 10.1109/TPS.2002.1003879
  • Van De Sanden, M.C.M., Schram, P.P.J.M., Peeters, A.G., Van Der Mullen, J.A.M., Kroesen, G.M.W., (1989) Phys. Rev. A, 40, p. 5273. , 1050-2947 10.1103/PhysRevA.40.5273
  • Noble, B., (1964) Numerical Methods: 2 Differences, Integration and Differential Equations, , (Oliver and Boyd, Edinburgh)
  • Shayler, P.J., Fang, M.T.C., (1978) J. Phys. D: Appl. Phys., 11, p. 1743. , 0022-3727 10.1088/0022-3727/11/12/013
  • Zhang, J.F., Fang, M.T.C., Newland, D.B., (1987) J. Phys. D: Appl. Phys., 20, p. 368. , 0022-3727 10.1088/0022-3727/20/3/020
  • Dowell, D.H., King, F.K., Kirby, R.E., Schemerge, J.F., (2006) Phys. Rev. ST Accel. Beams, 9, p. 063502. , 1098-4402 10.1103/PhysRevSTAB.9.063502

Citas:

---------- APA ----------
Prevosto, L., Kelly, H. & Mancinelli, B. (2009) . On the physical origin of the nozzle characteristic and its connection with the double-arcing phenomenon in a cutting torch. Journal of Applied Physics, 105(1).
http://dx.doi.org/10.1063/1.3041636
---------- CHICAGO ----------
Prevosto, L., Kelly, H., Mancinelli, B. "On the physical origin of the nozzle characteristic and its connection with the double-arcing phenomenon in a cutting torch" . Journal of Applied Physics 105, no. 1 (2009).
http://dx.doi.org/10.1063/1.3041636
---------- MLA ----------
Prevosto, L., Kelly, H., Mancinelli, B. "On the physical origin of the nozzle characteristic and its connection with the double-arcing phenomenon in a cutting torch" . Journal of Applied Physics, vol. 105, no. 1, 2009.
http://dx.doi.org/10.1063/1.3041636
---------- VANCOUVER ----------
Prevosto, L., Kelly, H., Mancinelli, B. On the physical origin of the nozzle characteristic and its connection with the double-arcing phenomenon in a cutting torch. J Appl Phys. 2009;105(1).
http://dx.doi.org/10.1063/1.3041636