Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A numerical study of the space-charge sheath adjacent to the nozzle wall of a cutting torch is presented. The hydrodynamic model corresponds to a collision-dominated sheath and does not assume cold ions, so drift-diffusion-type equations are used. Also an improved expression for the ion-neutral momentum transfer is employed rather than the usual constant ion-mean-free-path or constant ion collision frequency approximations. Assuming a constant electron temperature in the sheath and neglecting the electron inertial term, the continuity and momentum equations for ions and electrons, together with Poisson's equation, were solved for the electric potential, ion velocities (both normal and tangential components), and for the ion and electron densities. It was found that both the ion and electron densities present a sudden drop at the sheath-plasma edge. The ion density continues to decrease slowly inside the sheath, while the electron density presents a virtually zero value everywhere inside the sheath, the electron thermal conduction flux to the nozzle wall being negligible. These wall results thus become thermally isolated in spite of the high electron temperature in its adjacency. For a nozzle biasing voltage close to the gas breakdown, it was found that the electric field value is high, reaching a value of about 9× 106 V m-1 at the exit of the nozzle wall. This value is higher than the average field value across the sheath and is on the order of the breakdown threshold value. This means that an undesired sheath breakdown could occur at the vicinities of the nozzle exit even if the average electric field across the sheath is not strong enough. © 2009 American Institute of Physics.

Registro:

Documento: Artículo
Título:On the space-charge boundary layer inside the nozzle of a cutting torch
Autor:Prevosto, L.; Kelly, H.; Mancinelli, B.
Filiación:Universidad Tecnológica Nacional, Regional Venado Tuerto, Las Heras 644, Venado Tuerto, Pcia. Santa Fe 2600, Argentina
Departamento de Física, Instituto de Física Del Plasma (CONICET), Ciudad Universitaria Pab. i, Buenos Aires 1428, Argentina
Palabras clave:Average field; Biasing voltages; Breakdown threshold; Cold ions; Cutting torch; Drift diffusion; Electron densities; Gas breakdown; Hydrodynamic model; Ion collisions; Ion density; Ion velocity; Mean-free path; Momentum equation; Nozzle exits; Nozzle wall; Numerical studies; Plasma edges; Poisson's equation; Space charges; Space-charge sheath; Tangential components; Thermal conduction; Zero values; Carrier concentration; Electric fields; Electric potential; Electron density measurement; Fluid dynamics; Ions; Nozzles; Plasma turbulence; Poisson equation; Electron temperature
Año:2009
Volumen:105
Número:12
DOI: http://dx.doi.org/10.1063/1.3153147
Título revista:Journal of Applied Physics
Título revista abreviado:J Appl Phys
ISSN:00218979
CODEN:JAPIA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00218979_v105_n12_p_Prevosto.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218979_v105_n12_p_Prevosto

Referencias:

  • Nemchinsky, V.A., Severance, W.S., (2006) J. Phys. D: Appl. Phys., 39, p. 423. , 0022-3727,. 10.1088/0022-3727/39/22/R01
  • Prevosto, L., Kelly, H., Mancinelli, B., (2008) IEEE Trans. Plasma Sci., 36, p. 263. , 0093-3813,. 10.1109/TPS.2007.914176
  • Prevosto, L., Kelly, H., Mancinelli, B., (2008) IEEE Trans. Plasma Sci., 36, p. 271. , 0093-3813,. 10.1109/TPS.2007.914182
  • Prevosto, L., Kelly, H., Mancinelli, B., (2009) J. Appl. Phys., 105, p. 013309. , 0021-8979,. 10.1063/1.3041636
  • Riemann, K.U., (1991) J. Phys. D: Appl. Phys., 24, p. 493. , 0022-3727,. 10.1088/0022-3727/24/4/001
  • Franklin, R.N., (2003) J. Phys. D: Appl. Phys., 36, p. 309. , 0022-3727,. 10.1088/0022-3727/36/22/R01
  • Boulos, M., Fauchais, P., Pfender, E., (1994) Thermal Plasmas, Fundamentals and Applications, 1. , (Plenum, New York), Vol.
  • Franklin, R.N., (2002) J. Phys. D: Appl. Phys., 35, p. 2270. , 0022-3727,. 10.1088/0022-3727/35/18/307
  • Riemann, K.U., (2003) J. Phys. D: Appl. Phys., 36, p. 2811. , 0022-3727,. 10.1088/0022-3727/36/22/007
  • Raizer, Y.P., (1991) Gas Discharge Physics, , (Springer, Berlin)
  • Sheridan, T.E., Goree, J., (1991) Phys. Fluids B, 3, p. 2796. , 0899-8221,. 10.1063/1.859987
  • Girard, L., Teulet, Ph., Razafinimanana, M., Gleizes, A., Camy-Peyret, F., Baillot, E., Richard, F., (2006) J. Phys. D: Appl. Phys., 39, p. 1543. , 0022-3727,. 10.1088/0022-3727/39/8/014
  • Freton, P., Gonzalez, J.J., Gleizes, A., Camy Peyret, F., Caillibotte, G., Delzenne, M., (2002) J. Phys. D: Appl. Phys., 35, p. 115. , 0022-3727,. 10.1088/0022-3727/35/2/304
  • Freton, P., Gonzalez, J.J., Camy Peyret, F., Gleizes, A., (2003) J. Phys. D: Appl. Phys., 36, p. 1269. , 0022-3727,. 10.1088/0022-3727/36/11/307
  • Pardo, C., González-Aguilar, J., Rodríguez Yunta, A., Calderón, M.A.G., (1999) J. Phys. D: Appl. Phys., 32, p. 2181. , 0022-3727,. 10.1088/0022-3727/32/17/308
  • Peters, J., Heberlein, J., Lindsay, J., (2007) J. Phys. D: Appl. Phys., 40, p. 3960. , 0022-3727,. 10.1088/0022-3727/40/13/008
  • Sternovsky, Z., Robertson, S., (2006) IEEE Trans. Plasma Sci., 34, p. 850. , 0093-3813,. 10.1109/TPS.2006.874853
  • Sheridan, T.E., Goeckner, M.J., (1995) J. Appl. Phys., 77, p. 4967. , 0021-8979,. 10.1063/1.359304
  • Blank, J.L., (1968) Phys. Fluids, 11, p. 1686. , 1070-6631,. 10.1063/1.1692182
  • Franklin, R.N., (2004) J. Phys. D: Appl. Phys., 37, p. 1342. , 0022-3727,. 10.1088/0022-3727/37/9/007
  • Franklin, R.N., (2003) J. Phys. D: Appl. Phys., 36, p. 2821. , 0022-3727,. 10.1088/0022-3727/36/22/008
  • Franklin, R.N., (2002) IEEE Trans. Plasma Sci., 30, p. 352. , 0093-3813,. 10.1109/TPS.2002.1003879
  • Goldston, R.J., Rutherford, P.H., (1995) Introduction to Plasma Physics, , (Institute of Physics, Bristol)
  • Anderson, H.L., (1989) A Physicist's Desk Reference, , 2nd ed. (AIP, New York)

Citas:

---------- APA ----------
Prevosto, L., Kelly, H. & Mancinelli, B. (2009) . On the space-charge boundary layer inside the nozzle of a cutting torch. Journal of Applied Physics, 105(12).
http://dx.doi.org/10.1063/1.3153147
---------- CHICAGO ----------
Prevosto, L., Kelly, H., Mancinelli, B. "On the space-charge boundary layer inside the nozzle of a cutting torch" . Journal of Applied Physics 105, no. 12 (2009).
http://dx.doi.org/10.1063/1.3153147
---------- MLA ----------
Prevosto, L., Kelly, H., Mancinelli, B. "On the space-charge boundary layer inside the nozzle of a cutting torch" . Journal of Applied Physics, vol. 105, no. 12, 2009.
http://dx.doi.org/10.1063/1.3153147
---------- VANCOUVER ----------
Prevosto, L., Kelly, H., Mancinelli, B. On the space-charge boundary layer inside the nozzle of a cutting torch. J Appl Phys. 2009;105(12).
http://dx.doi.org/10.1063/1.3153147