Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We have calculated the electrical conductivity in the current-in-plane geometry of multilayered granular alloys composed of Co clusters embedded in Ag alternating with pure Ag layers. In particular, we have paid attention to the conductivity behavior as a function of Ag layer thickness, Co clusters' size, and degree of percolation. The electronic structure is self-consistently calculated within the unrestricted Hartree-Fock approximation using a parametrized tight binding Hamiltonian which includes a Hubbard-like term. The conductivity tensor is obtained by using the semiclassical Boltzmann equation in the anisotropic relaxation time approximation. We have used a s-d Mott-like scattering model for the electronic mean free path taking into account the Sondheimer's picture for electronic transport in thin films. We find that the experimental conductivity behavior at coalescence can be explained through the electronic band contribution. The conductivity behavior of continuous multilayers is already attained in the very early stage of percolation, as in the experiments. © 2007 American Institute of Physics.

Registro:

Documento: Artículo
Título:Semiclassical electronic transport calculations in multilayered granular alloys
Autor:Milano, J.; Llois, A.M.
Filiación:Departamento de Física, Comisión Nacional de Energía Atómica, San Martín, Argentina
Departamento de Física Juan José Giambiagi, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
CNEA-Centro Atómico Bariloche, (R8402AGP) San Carlos de Bariloche, Argentina
Palabras clave:Approximation theory; Cobalt; Electron transport properties; Electronic structure; Granular materials; Relaxation time; Silver; Tensors; Thickness measurement; Anisotropic relaxation time; Granular alloys; Hartree-Fock approximation; Multilayers
Año:2007
Volumen:102
Número:1
DOI: http://dx.doi.org/10.1063/1.2751083
Título revista:Journal of Applied Physics
Título revista abreviado:J Appl Phys
ISSN:00218979
CODEN:JAPIA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00218979_v102_n1_p_Milano.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218979_v102_n1_p_Milano

Referencias:

  • Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Chazelas, J., (1988) Phys. Rev. Lett., 61, p. 2472. , 0031-9007 10.1103/PhysRevLett.61.2472
  • Berkowitz, A.E., Mitchell, J.R., Carey, M.J., Young, A.P., Zhang, S., Spada, F.E., Parker, F.T., Thomas, G., (1992) Phys. Rev. Lett., 68, p. 3745. , 0031-9007 10.1103/PhysRevLett.68.3745
  • Xiao, J.Q., Jiang, J.S., Chien, C.L., (1992) Phys. Rev. Lett., 68, p. 3749. , 0031-9007 10.1103/PhysRevLett.68.3749
  • Zhang, S., Levy, P.M., (1993) J. Appl. Phys., 73, p. 5315. , 0021-8979 10.1063/1.353766
  • Sheng, L., Wang, Z.D., Xing, D.Y., Zhu, J.X., (1996) Phys. Rev. B, 53, p. 8203. , 0163-1829 10.1103/PhysRevB.53.8203
  • Ferrari, E.F., Da Silva, F.C.S., Knobel, M., (1999) Phys. Rev. B, 59, p. 8412. , 0163-1829 10.1103/PhysRevB.59.8412
  • Holody, P., Steren, L.B., Morel, R., Fert, A., Loloee, R., Schroeder, P.A., (1994) Phys. Rev. B, 50, p. 12999. , 0163-1829 10.1103/PhysRevB.50.12999
  • Van Alphen, E.A.M., De Jonge, W.J.M., (1995) Phys. Rev. B, 51, p. 8182. , 0163-1829 10.1103/PhysRevB.51.8182
  • Luo, Y., Moske, M., Kaeufler, A., Lorenz, T., Samwer, K., (1997) J. Appl. Phys., 81, p. 4589. , 0021-8979 10.1063/1.365171
  • Bracho Rodríguez, G.J., Pereira, L.G., Miranda, M.G.M., Antunes, A.B., Baibich, M.N., (2000) J. Magn. Magn. Mater., 214, p. 78. , 0304-8853 10.1016/S0304-8853(99)00792-1
  • Milano, J., Steren, L.B., Llois, A.M., Butera, A., Barnard, J., (2004) J. Appl. Phys., 96, p. 7392. , 0021-8979 10.1063/1.1810638
  • Fettar, F., Steren, L.B., Barth́ĺmy, A., Morel, R., Fert, A., Barnard, J.A., Jarratt, J.D., (1997) J. Magn. Magn. Mater., 165, p. 316. , 0304-8853 10.1016/S0304-8853(96)00540-9
  • Mott, N., (1964) Adv. Phys., 13, p. 325. , 0001-8732 10.1080/00018736400101041
  • Sondheimer, E.H., (1952) Adv. Phys., 1, p. 1. , 0001-8732 10.1080/00018735200101151
  • Milano, J., Llois, A.M., Steren, L.B., (2002) Phys. Rev. B, 66, p. 134405. , 0163-1829 10.1103/PhysRevB.66.134405
  • Datta, S., (1995) Electronic Transport in Mesoscopic Systems, , Cambridge University Press, Cambridge
  • Ziman, J.M., (1967) Electrons and Phonons, , Oxford University Press, London
  • Zahn, P., Binder, J., Mertig, I., (2003) Phys. Rev. B, 68, p. 100403
  • Guevara, J., Llois, A.M., Weissmann, M., (1998) Phys. Rev. Lett., 81, p. 5306. , 0031-9007 10.1103/PhysRevLett.81.5306
  • Shiba, H., (1971) Prog. Theor. Phys., 46, p. 77. , 0033-068X 10.1143/PTP.46.77

Citas:

---------- APA ----------
Milano, J. & Llois, A.M. (2007) . Semiclassical electronic transport calculations in multilayered granular alloys. Journal of Applied Physics, 102(1).
http://dx.doi.org/10.1063/1.2751083
---------- CHICAGO ----------
Milano, J., Llois, A.M. "Semiclassical electronic transport calculations in multilayered granular alloys" . Journal of Applied Physics 102, no. 1 (2007).
http://dx.doi.org/10.1063/1.2751083
---------- MLA ----------
Milano, J., Llois, A.M. "Semiclassical electronic transport calculations in multilayered granular alloys" . Journal of Applied Physics, vol. 102, no. 1, 2007.
http://dx.doi.org/10.1063/1.2751083
---------- VANCOUVER ----------
Milano, J., Llois, A.M. Semiclassical electronic transport calculations in multilayered granular alloys. J Appl Phys. 2007;102(1).
http://dx.doi.org/10.1063/1.2751083