Abstract:
We investigate the behavior of finitely generated projective modules over a down-up algebra. Specifically, we show that every noetherian down-up algebra A(α,β,γ) has a non-free, stably free right ideal. Further, we compute the stable rank of these algebras using Stafford's Stable Range Theorem and Kmax dimension. © 2018
Registro:
Documento: |
Artículo
|
Título: | Stable rank of down-up algebras |
Autor: | Gallego, C.; Solotar, A. |
Filiación: | IMAS, UBA-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
|
Palabras clave: | Down-up algebras; Kmax dimension; Krull dimension; Projective modules; Stable rank; Stably free modules |
Año: | 2019
|
Volumen: | 526
|
Página de inicio: | 266
|
Página de fin: | 282
|
DOI: |
http://dx.doi.org/10.1016/j.jalgebra.2018.02.037 |
Título revista: | Journal of Algebra
|
Título revista abreviado: | J. Algebra
|
ISSN: | 00218693
|
CODEN: | JALGA
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218693_v526_n_p266_Gallego |
Referencias:
- Antoniou, I., Iyudu, N., Wisbauer, R., On Serre's problem for RIT algebras (2003) Comm. Algebra, 31 (12), pp. 6037-6050
- Bavula, V., van Oystaeyen, F., Krull Dimension of generalized Weyl algebras and itered skew polynomial rings: commutative coefficients (1998) J. Algebra, 208, pp. 1-34
- Bavula, V., Lenagan, T., Generalized Weyl algebras are tensor Krull minimal (2001) J. Algebra, 239, pp. 93-111
- Benkart, G., Roby, T., Down-up algebras (1998) J. Algebra, 209, pp. 305-344
- Carvalho, P., Musson, I., Down-up algebras and their representation theory (2000) J. Algebra, 228, pp. 286-310
- Carvalho, P., Musson, I., Monolithic modules over Noetherian rings (2011) Glasg. Math. J., 53, pp. 683-692
- Chouhy, S., Herscovich, E., Solotar, A., Hochschild homology and cohomology of down-up algebras (2018) J. Algebra, 498, pp. 102-128
- Iyudu, N., Wisbauer, R., Non-trivial stably free modules over crossed products (2009) J. Phys. A, 42, pp. 1-11
- Jordan, D.A., Down-up algebras and ambiskew polynomial rings (2000) J. Algebra, 228, pp. 311-346
- Kirkman, R., Musson, I., Passman, D., Noetherian down-up algebras (1999) Proc. Amer. Math. Soc., 127 (11), pp. 3161-3167
- Lam, T.Y., Serre's Problem on Projective Modules (2006) Springer Monogr. Math., , Springer
- Lam, T.Y., A crash course on stable range, cancellation, substitution, and exchange (2004) J. Algebra Appl., 3 (3), pp. 301-343
- McConnell, J., Robson, J., Noncommutative Noetherian Rings (2001) Grad. Stud. Math., 30. , AMS
- Stafford, J.T., Module structure of Weyl algebras (1978) J. Lond. Math. Soc., 18, pp. 429-442
- Stafford, J.T., On the stable range of right noetherian rings (1981) Bull. Lond. Math. Soc., 13, pp. 39-41
- Stafford, J.T., Stable free, projective right ideals (1985) Compos. Math., 54, pp. 63-78
- Stafford, J.T., Absolute stable rank and quadratic forms over noncommutative rings (1990) K-Theory, 4, pp. 121-130
- Suslin, A.A., The cancellation problem for projective modules and related topics (1979) Ring Theory, Proc. Conf., Univ. Waterloo, Waterloo, 1978, Lecture Notes in Math., 734, pp. 323-338. , Springer-Verlag New York–Berlin
- Tintera, G., Kmax and stable rank of enveloping algebras (1993) Proc. Amer. Math. Soc., 119 (3), pp. 691-696
- Zhao, K., Centers of down-up algebras (1999) J. Algebra, 214, pp. 103-121
Citas:
---------- APA ----------
Gallego, C. & Solotar, A.
(2019)
. Stable rank of down-up algebras. Journal of Algebra, 526, 266-282.
http://dx.doi.org/10.1016/j.jalgebra.2018.02.037---------- CHICAGO ----------
Gallego, C., Solotar, A.
"Stable rank of down-up algebras"
. Journal of Algebra 526
(2019) : 266-282.
http://dx.doi.org/10.1016/j.jalgebra.2018.02.037---------- MLA ----------
Gallego, C., Solotar, A.
"Stable rank of down-up algebras"
. Journal of Algebra, vol. 526, 2019, pp. 266-282.
http://dx.doi.org/10.1016/j.jalgebra.2018.02.037---------- VANCOUVER ----------
Gallego, C., Solotar, A. Stable rank of down-up algebras. J. Algebra. 2019;526:266-282.
http://dx.doi.org/10.1016/j.jalgebra.2018.02.037