Abstract:
We develop in this paper methods for studying the implicitization problem for a rational map φ{symbol} : Pn (P1)n + 1 defining a hypersurface in (P1)n + 1, based on computing the determinant of a graded strand of a Koszul complex. We show that the classical study of Macaulay resultants and Koszul complexes coincides, in this case, with the approach of approximation complexes and we study and give a geometric interpretation for the acyclicity conditions. Under suitable hypotheses, these techniques enable us to obtain the implicit equation, up to a power, and up to some extra factor. We give algebraic and geometric conditions for determining when the computed equation defines the scheme theoretic image of φ{symbol}, and, what are the extra varieties that appear. We also give some applications to the problem of computing sparse discriminants. © 2009 Elsevier Inc. All rights reserved.
Referencias:
- Avramov, L.L., Complete intersections and symmetric algebras (1981) J. Algebra, 73 (1), pp. 248-263
- Busé, L., Chardin, M., Implicitizing rational hypersurfaces using approximation complexes (2005) J. Symbolic Comput., 40 (4-5), pp. 1150-1168
- Busé, L., Chardin, M., Jouanolou, J.-P., Torsion of the symmetric algebra and implicitization, arXiv:math.AC/0610186 Proc. Amer. Math. Soc, , press
- Busé, L., Jouanolou, J.-P., On the closed image of a rational map and the implicitization problem (2003) J. Algebra, 265 (1), pp. 312-357
- Busé, L., Mourrain, B., Multires package, , http://www-sop.inria.fr/galaad/logiciels/multires/
- Bourbaki, N., (2007) Éléments de mathématique. Algèbre. Chapitre 10. Algèbre homologique, , Springer-Verlag, Berlin Reprint of the 1980 original [Masson, Paris; MR0610795]
- Laurent Busé, Elimination theory in codimension one and applications, INRIA research report 5918, p. 47, notes of lectures given at the CIMPA-UNESCO-IRAN school in Zanjan, Iran, July 9-22 2005, 2006; Chardin, M., The resultant via a Koszul complex (1993) Progr. Math., 109, pp. 29-39. , Computational Algebraic Geometry. Nice, 1992, Birkhäuser Boston, Boston, MA
- Chardin, Marc., Implicitization using approximation complexes (2006) Math. Vis., pp. 23-35. , Algebraic Geometry and Geometric Modeling, Springer, Berlin
- Cueto, M.A., Dickenstein, A., Some results on inhomogeneous discriminants (2007) Proc. XVI Coloquio Latinoamericano de Álgebra Biblioteca de la Revista Matemática Iberoamericana, , 978-84-611-7907-7
- Demazure, M., Les Notes Informelles de Calcul Formel: Une définition constructive du resultant, Sciences et Technologies de l'Information et de la Communication à l'X, CNRS 2341, pp. 1984-1994. , FRE
- Gel'fand, I.M., Kapranov, M.M., Zelevinsky, A.V., Discriminants, Resultants, and Multidimensional Determinants (1994) Math. Theory Appl., , Birkhäuser Boston, Boston, MA
- Herzog, J., Simis, A., Vasconcelos, W.V., Approximation complexes of blowing-up rings (1982) J. Algebra, 74 (2), pp. 466-493
- Herzog, J., Simis, A., Vasconcelos, W.V., Approximation complexes of blowing-up rings. II (1983) J. Algebra, 82 (1), pp. 53-83
- Jouanolou, J.-P., Le formalisme du résultant (1991) Adv. Math., 90 (2), pp. 117-263
- Jouanolou, J.-P., Aspects invariants de l'élimination (1995) Adv. Math., 114, pp. 1-174
- Vasconcelos, W.V., Arithmetic of Blowup Algebras (1994) London Math. Soc. Lecture Note Ser., 195. , Cambridge University Press, Cambridge
Citas:
---------- APA ----------
(2009)
. The implicitization problem for φ{symbol} : Pn (P1)n + 1. Journal of Algebra, 322(11), 3878-3895.
http://dx.doi.org/10.1016/j.jalgebra.2009.03.006---------- CHICAGO ----------
Botbol, N.
"The implicitization problem for φ{symbol} : Pn (P1)n + 1"
. Journal of Algebra 322, no. 11
(2009) : 3878-3895.
http://dx.doi.org/10.1016/j.jalgebra.2009.03.006---------- MLA ----------
Botbol, N.
"The implicitization problem for φ{symbol} : Pn (P1)n + 1"
. Journal of Algebra, vol. 322, no. 11, 2009, pp. 3878-3895.
http://dx.doi.org/10.1016/j.jalgebra.2009.03.006---------- VANCOUVER ----------
Botbol, N. The implicitization problem for φ{symbol} : Pn (P1)n + 1. J. Algebra. 2009;322(11):3878-3895.
http://dx.doi.org/10.1016/j.jalgebra.2009.03.006