Abstract:
We establish sharp geometric C 1+α regularity estimates for bounded weak solutions of evolution equations of p-Laplacian type. Our approach is based on geometric tangential methods, and makes use of a systematic oscillation mechanism combined with an adjusted intrinsic scaling argument. © 2019, The Hebrew University of Jerusalem.
Registro:
Documento: |
Artículo
|
Título: | Sharp regularity estimates for quasilinear evolution equations |
Autor: | Amaral, M.D.; da Silva, J.V.; Ricarte, G.C.; Teymurazyan, R. |
Filiación: | Department of Mathematics, Universidade da Integração Internacional da Lusofonia Afro-Brasileira - UNILAB, Acarape, Ceará 62785-000, Brazil FCEyN, Department of Mathematics, University of Buenos Aires, Ciudad Universitaria-Pabellón I, Buenos Aires, C1428EGA, Argentina Department of Mathematics, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil CMUC, Department of Mathematics, University of Coimbra, Coimbra, 3001-501, Portugal
|
Año: | 2019
|
DOI: |
http://dx.doi.org/10.1007/s11856-019-1842-1 |
Título revista: | Israel Journal of Mathematics
|
Título revista abreviado: | Isr. J. Math.
|
ISSN: | 00212172
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00212172_v_n_p_Amaral |
Referencias:
- Acerbi, E., Mingione, G., Gradient estimates for a class of parabolic systems (2007) Duke Mathematical Journal, 136, pp. 285-320
- Acerbi, E., Mingione, G., Seregin, G.A., Regularity results for parabolic systems related to a class of non-Newtonian fluids (2004) Annales de l’Institut Henri Poincaré. Analyse Non Linéaire, 21, pp. 25-60
- Amaral, M.D., Teixeira, E.V., Free transmission problems (2015) Communications in Mathematical Physics, 337, pp. 1465-1489
- Araújo, D.J., Ricarte, G.C., Teixeira, E.V., Geometric gradient estimates for solutions to degenerate elliptic equations (2015) Calculus of Variations and Partial Differential Equations, 53, pp. 605-625
- Araújo, D.J., Teixeira, E.V., Urbano, J.M., A proof of the Cpℓ -regularity conjecture in the plane (2017) Advances in Mathematics, 316, pp. 541-553
- Araújo, D.J., Teixeira, E.V., Urbano, J.M., Towards the Cp ' -regularity conjecture in higher dimensions (2018) International Mathematics Research Notices, pp. 6481-6495
- Araújo, D.J., Zhang, L., Optimal c1,a estimates for a class of elliptic quasilinear equations Communications in Contemporary Mathematics, , to appear
- Attouchi, A., Parviainen, M., Ruosteenoja, E., C1,a regularity for the normalized p- Poisson problem (2017) Journal de Mathématiques Pures et Appliquées, 108, pp. 553-591
- Bae, H.-O., Choe, H.J., Regularity for certain nonlinear parabolic systems (2004) Communications in Partial Differential Equations, 29, pp. 611-645
- Bögelein, V., Duzaar, F., Mingione, G., (2013) The Regularity of General Parabolic Systems with Degenerate Diffusion, Memoirs of the American Mathematical Society, 221
- Caffarelli, L.A., Interior a priori estimates for solutions of fully nonlinear equations (1989) Annals of Mathematics, 130, pp. 189-213
- Challal, S., Lyaghfouri, A., Rodrigues, J.F., Teymurazyan, R., On the regularity of the free boundary for quasilinear obstacle problems (2014) Interfaces and Free Boundaries, 16, pp. 359-394
- Choe, H.J., Hölder regularity for the gradient of solutions of certain singular parabolic systems (1991) Communications in Partial Differential Equations, 16, pp. 1709-1732
- da Silva, J.V., dos Prazeres, D., Schauder type estimates for “flat” viscosity solutions to non-convex fully nonlinear parabolic equations and applications (2019) Potential Analysis, 50, pp. 149-170
- Silva, J.V.D., Leitão, R.A., Ricarte, G.C., Geometric Regularity Estimates for Fully Nonlinear Elliptic Equations with Free Boundaries, , https://www.researchgate.net/publication/316283716_Geometric_regularity_estimates_for_fully_nonlinear_elliptic_equations_with_free_boundaries, submitted
- da Silva, J.V., Ochoa, P., Silva, A., Regularity for degenerate evolution equations with strong absorption (2018) Journal of Differential Equations, 264, pp. 7270-7293
- da Silva, J.V., Rossi, J.D., Salort, A.M., Regularity properties for p-dead core problems and their asymptotic limit as p → 8 (2019) Journal of the London Mathematical Society, 99, pp. 69-96
- da Silva, J.V., Salort, A.M., (2018) Sharp regularity estimates for quasi-linear elliptic dead core problems and applications, Calculus of Variations and Partial Differential Equations 57, p. 24
- da Silva, J.V., Teixeira, E.V., Sharp regularity estimates for second order fully nonlinear parabolic equations (2017) Mathematische Annalen, 369, pp. 1623-1648
- DiBenedetto, E., Degenerate Parabolic Equations (1993) Universitext, , Springer-Verlag, New York
- DiBenedetto, E., Friedman, A., Regularity of solutions of nonlinear degenerate parabolic systems (1984) Journal für die Reine und Angewandte Mathematik, 349, pp. 83-128
- DiBenedetto, E., Friedman, A., Addendum to: “Hölder estimates for nonlinear degenerate parabolic systems (1985) Journal für die Reine und Angewandte Mathematik, 363, pp. 217-220
- DiBenedetto, E., Friedman, A., Hölder estimates for nonlinear degenerate parabolic systems (1985) Journal für die Reine und Angewandte Mathematik, 357, pp. 1-22
- DiBenedetto, E., Gianazza, U., Vespri, V., Harnack’s Inequality for Degenerate and Singular Parabolic Equations (2012) Springer Monographs in Mathematics, , Springer, New York
- DiBenedetto, E., Urbano, J.M., Vespri, V., Current issues on singular and degenerate evolution equations (2004) Evolutionary Equations. Vol. I, pp. 169-286. , Handbook of Differential Equations, North-Holland, Amsterdam
- Iwaniec, T., Manfredi, J.J., Regularity of p-harmonic functions on the plane (1989) Revista Matemática Iberoamericana, 5, pp. 1-19
- Kinnunen, J., Lewis, J.L., Higher integrability for parabolic systems of p-Laplacian type (2000) Duke Mathematical Journal, 102, pp. 253-271
- Krylov, N.V., (2008) Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, 96. , American Mathematical Society, Providence, RI
- Kuusi, T., Mingione, G., Gradient regularity for nonlinear parabolic equations (2013) Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, 12, pp. 755-822
- Kuusi, T., Mingione, G., The Wolff gradient bound for degenerate parabolic equations (2014) Journal of the European Mathematical Society, 16, pp. 835-892
- Ladyženskaja, O.A., Solonnikov, V.A., Ural’Ceva, N.N., (1968) Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23. , American Mathematical Society, Providence, RI
- Lieberman, G.M., (1996) Second Order Parabolic Differential Equations, , World Scientific Publishing, River Edge, NJ
- Lindgren, E., Lindqvist, P., Regularity of the p-Poisson equation in the plane (2017) Journal d’Analyse Mathématique, 132, pp. 217-228
- Lindqvist, P., On the time derivative in a quasilinear equation (2008) Skrifter. Det Kongelige Norske Videnskabers Selskab, 2, pp. 1-7
- Simon, J., Compact sets in the space Lp(0, T;B) (1987) Annali di Matematica Pura ed Applicata, 146, pp. 65-96
- Teixeira, E.V., Sharp regularity for general Poisson equations with borderline sources (2013) Journal de Mathématiques Pures et Appliquées, 99, pp. 150-164
- Teixeira, E.V., Regularity for quasilinear equations on degenerate singular sets (2014) Mathematiche Annalen, 358, pp. 241-256
- Teixeira, E.V., Hessian continuity at degenerate points in nonvariational elliptic problems (2015) International Mathematics Research Notices, pp. 6893-6906
- Teixeira, E.V., Urbano, J.M., A geometric tangential approach to sharp regularity for degenerate evolution equations (2014) Analysis & PDE, 7, pp. 733-744
- Teixeira, E.V., Urbano, J.M., An intrinsic Liouville theorem for degenerate parabolic equations (2014) Archiv Mathematik, 102, pp. 483-487
- Urbano, J.M., (2008) The Method of Intrinsic Scaling, Lecture Notes in Mathematics, 1930. , Springer-Verlag, Berlin
- Wiegner, M., On C α -regularity of the gradient of solutions of degenerate parabolic systems (1986) Annali di Matematica Pura ed Applicata, 145, pp. 385-405
Citas:
---------- APA ----------
Amaral, M.D., da Silva, J.V., Ricarte, G.C. & Teymurazyan, R.
(2019)
. Sharp regularity estimates for quasilinear evolution equations. Israel Journal of Mathematics.
http://dx.doi.org/10.1007/s11856-019-1842-1---------- CHICAGO ----------
Amaral, M.D., da Silva, J.V., Ricarte, G.C., Teymurazyan, R.
"Sharp regularity estimates for quasilinear evolution equations"
. Israel Journal of Mathematics
(2019).
http://dx.doi.org/10.1007/s11856-019-1842-1---------- MLA ----------
Amaral, M.D., da Silva, J.V., Ricarte, G.C., Teymurazyan, R.
"Sharp regularity estimates for quasilinear evolution equations"
. Israel Journal of Mathematics, 2019.
http://dx.doi.org/10.1007/s11856-019-1842-1---------- VANCOUVER ----------
Amaral, M.D., da Silva, J.V., Ricarte, G.C., Teymurazyan, R. Sharp regularity estimates for quasilinear evolution equations. Isr. J. Math. 2019.
http://dx.doi.org/10.1007/s11856-019-1842-1