Artículo

Losada, M.; Fortin, S.; Holik, F. "Classical Limit and Quantum Logic" (2018) International Journal of Theoretical Physics. 57(2):465-475
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The analysis of the classical limit of quantum mechanics usually focuses on the state of the system. The general idea is to explain the disappearance of the interference terms of quantum states appealing to the decoherence process induced by the environment. However, in these approaches it is not explained how the structure of quantum properties becomes classical. In this paper, we consider the classical limit from a different perspective. We consider the set of properties of a quantum system and we study the quantum-to-classical transition of its logical structure. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times. © 2017, Springer Science+Business Media, LLC.

Registro:

Documento: Artículo
Título:Classical Limit and Quantum Logic
Autor:Losada, M.; Fortin, S.; Holik, F.
Filiación:CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
CONICET - Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
CONICET - Instituto de Física, Universidad Nacional de La Plata, La Plata, Argentina
Palabras clave:Classical limit; Decoherence; Non-unitary evolution; Quantum logic
Año:2018
Volumen:57
Número:2
Página de inicio:465
Página de fin:475
DOI: http://dx.doi.org/10.1007/s10773-017-3579-0
Título revista:International Journal of Theoretical Physics
Título revista abreviado:Int. J. Theor. Phys.
ISSN:00207748
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00207748_v57_n2_p465_Losada

Referencias:

  • Cohen, D., (1989) An introduction to hilbert space and quantum logic, , Springer, Berlin
  • Schlosshauer, M., (2007) Decoherence and the quantum-to-classical transition, , Springer, Berlin
  • Bub, J., (1997) Interpreting the quantum world, , Cambridge University Press, Cambridge
  • von Neumann, J., (1932) Mathematische grundlagen der quantenmechanik, , University Press, Heidelberg
  • Birkhoff, G., von Neumann, J., The logic of quantum mechanicsx (1936) Ann. Math., 37, pp. 823-843
  • Kalmbach, G., (1983) Orthomodular lattices, , Academic Press, San Diego
  • Ballentine, L., (1990) Quantum mechanics, , Prentice Hall, New York
  • Rèdei, M., (1998) Quantum logic in algebraic approach, , Kluwer Academic Publishers, Dordrecht
  • Reed, M., Simon, B., (1972) Methods of modern mathematical physics I: Functional analysis, , Academic Press, New York
  • Lacki, J., The early axiomatizations of quantum mechanics: jordan, von neumann and the continuation of hilbert’s program (2000) Arch. Hist. Exact Sci., 54, pp. 279-318
  • Varadarajan, V., (1968) Geometry of quantum theory I, , van trand, Princeton
  • Stubbe, I., Van Steirteghem, B., Propositional systems, hilbert lattices and generalized hilbert spaces (2007) Handbook of Quantum Logic Quantum Structures: Quantum Structures, pp. 477-523. , In:, Engesser, K., Gabbay, D.M., Lehmann, D. eds. Elsevier, Amsterdam
  • Holik, F., Massri, C., Plastino, A., Zuberman, L., On the lattice structure of probability spaces in quantum mechanics (2013) Int. J. Theor. Phys., 52, pp. 1836-1876
  • Holik, F., Plastino, A., Sáenz, M., A discussion on the origin of quantum probabilities (2014) Ann. Phys., 340, pp. 293-310
  • Holik, F., Plastino, A., Quantum mechanics: a new turn in probability theory (2015) Contemporary Research in Quantum Systems, pp. 399-414. , In:, Ezziane, Z. ed. Nova Publishers, New York
  • Aerts, D., Durt, T., Van Bogaert, B., Quantum probability, the classical limit and nonlocality (1993) Symposium on the Foundations of Modern Physics 1992: The Copenhagen Interpretation and Wolfgang Pauli, pp. 35-56. , In:, Laurikainen, K.V., Montonen, C. eds. World Scientific, Singapore
  • Zeh, H.D., On the interpretation of measurement in quantum theory (1970) Found. Phys., 1, pp. 69-76
  • Zeh, H.D., Toward a quantum theory of observation (1973) Found. Phys., 3, pp. 109-116
  • Zurek, W., Environment-induced superselection rules (1982) Phys. Rev. D, 26, pp. 1862-1880
  • Zurek, W., Decoherence and the transition from quantum to classical (1991) Phys. Today, 44, pp. 36-44
  • Zurek, W., Decoherence, einselection, and the quantum origins of the classical (2003) Rev. Mod. Phys., 75, pp. 715-775
  • Diósi, L., A universal master equation for the gravitational violation of quantum mechanics (1987) Phys. Lett. A, 120, pp. 377-381
  • Milburn, G., Intrinsic decoherence in quantum mechanics (1991) Phys. Rev. A, 44, pp. 5401-5406
  • Casati, G., Chirikov, B., Quantum chaos: unexpected complexity (1995) Physica D, 86, pp. 220-237
  • Polarski, D., Starobinsky, A., Semiclassicality and decoherence of cosmological perturbations (1996) Class. Quantum Grav., 13, pp. 377-392
  • Adler, S., (2004) Quantum theory as an emergent phenomenon, , Cambridge University Press, Cambridge
  • Kiefer, C., Polarski, D., Why do cosmological perturbations look classical to us? (2009) Adv. Sci. Lett., 2, pp. 164-173
  • Castagnino, M., Lombardi, O., The self-induced approach to decoherence in cosmology (2003) Int. J. Theor. Phys., 42, pp. 1281-1299
  • Castagnino, M., Lombardi, O., Self-induced decoherence: a new approach (2004) Stud. Hist. Philos. Mod. Phys., 35, pp. 73-107
  • Castagnino, M., Lombardi, O., Self-induced decoherence and the classical limit of quantum mechanics (2005) Philos. Sci., 72, pp. 764-776
  • Castagnino, M., Lombardi, O., Non-integrability and mixing in quantum systems: on the way to quantum chaosx (2007) Stud. Hist. Philos. Mod. Phys., 38, pp. 482-513
  • Castagnino, M., The classical-statistical limit of quantum mechanics (2004) Physica A, 335, pp. 511-517
  • Castagnino, M., Ordóñez, A., Algebraic formulation of quantum decoherence (2004) Int. J. Theor. Phys., 43, pp. 695-719
  • Lombardi, O., Castagnino, M., A modal-hamiltonian interpretation of quantum mechanics (2008) Stud. Hist. Philos. of Sci., 39, pp. 380-443
  • Castagnino, M., Fortin, S., New bases for a general definition of the moving preferred basis (2011) Mod. Phys. Lett. A, 26, pp. 2365-2373
  • Fortin, S., Vanni, L., Quantum decoherence: a logical perspective (2014) Found. Phys., 44, pp. 1258-1268
  • Castagnino, M., Fortin, S., Formal features of a general theoretical framework for decoherence in open and closed systems (2011) Int. J. Theor. Phys., 52, pp. 1379-1398
  • Kolb, E., Turner, M., (1990) The early universe, , Addison-Wesley, Reading MA
  • Mukhanov, V., (2005) Physical foundations of cosmology, , Cambridge University Press, Cambridge
  • Peacock, J., (1999) Cosmological physics, , Cambridge University Press, Cambridge
  • Bohm, A., Harshman, N., Quantum theory in the rigged hilbert space — Irreversibility from causality (2007) Irreversibility and Causality Semigroups and Rigged Hilbert Spaces, pp. 179-237. , In:, Bohm, A., Doebner, H.D., Kielanowski, P. eds. Springer, Berlin
  • Moiseyev, N., (2011) Non-Hermitian quantum mechanics, , Cambridge University Press, Cambridge
  • Bohm, A., Gadella, M., (1989) Dirac kets, gamow vectors, and gel’fand triplets: the rigged hilbert space formulation of quantum mechanics, , Springer, Berlin
  • Castagnino, M., Fortin, S., Non-hermitian hamiltonians in decoherence and equilibrium theory (2012) J. Phys. A, 45, p. 444009
  • Fortin, S., Holik, F., Vanni, L., Non-unitary evolution of quantum logicsx (2016) Springer Proc. Phys., 184, pp. 219-234
  • Clarke, J., Braginski, A., (2004) The SQUID handbook: fundamentals and technology of SQUIDs and SQUID systems. volume I, , Weinheim, Wiley-VCH
  • Shor, P., Polynomial-time algorithms for prime factorization and discrete logarithm on a quantum computer (1997) SIAM J. Comput., 26, pp. 1484-1509

Citas:

---------- APA ----------
Losada, M., Fortin, S. & Holik, F. (2018) . Classical Limit and Quantum Logic. International Journal of Theoretical Physics, 57(2), 465-475.
http://dx.doi.org/10.1007/s10773-017-3579-0
---------- CHICAGO ----------
Losada, M., Fortin, S., Holik, F. "Classical Limit and Quantum Logic" . International Journal of Theoretical Physics 57, no. 2 (2018) : 465-475.
http://dx.doi.org/10.1007/s10773-017-3579-0
---------- MLA ----------
Losada, M., Fortin, S., Holik, F. "Classical Limit and Quantum Logic" . International Journal of Theoretical Physics, vol. 57, no. 2, 2018, pp. 465-475.
http://dx.doi.org/10.1007/s10773-017-3579-0
---------- VANCOUVER ----------
Losada, M., Fortin, S., Holik, F. Classical Limit and Quantum Logic. Int. J. Theor. Phys. 2018;57(2):465-475.
http://dx.doi.org/10.1007/s10773-017-3579-0