Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The ability of unrestricted Hartree-Fock (UHF), Møller-Plesset (MP2), density functional theory (DFT), and hybrid density functional/Hartree-Fock methodologies to describe the structure and spin-state energetics of iron porphyrins was assessed. In the first place, these techniques have been applied to Fe, Fe+, Fe2+, and Fe3+ for which HF calculations overestimate energy gaps, favoring stabilization of higher multiplicity states. DFT shows the opposite trend at the GGA level, with some improvement using the hybrid schemes B3LYP and half-and-half. We use the hybrid functionals to explore the dependence of the spin state with the iron displacement out of the porphyrin plane in the five-coordinate system, for which a high-spin ground state has been experimentally determined. The possibility of spin crossover, proposed in previous studies, is examined. Finally, the hybrid methodologies are applied to the computation of the oxyhemoglobin model. The B3LYP description of the electronic structure of both penta and hexa coordinate model systems is consistent with previous theoretical calculations and with experimental information of deoxy and oxy hemoglobin.

Registro:

Documento: Artículo
Título:Structure and spin-state energetics of an iron porphyrin model: An assessment of theoretical methods
Autor:Scherlis, D.A.; Estrin, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE, Pab II, C1428EHA, Buenos Aires, Argentina
Palabras clave:B3LYP; DFT; Hemoglobin; Porphyrin; Spin-state energetics; Calculations; Electronic density of states; Electronic structure; Energy gap; Ground state; Hemoglobin; Mathematical models; Probability density function; Hartree-Fock methodologies; Iron porphyrin; Moller-Plesset methodologies; Oxyhemoglobin model; Spin state energetics; Iron compounds
Año:2002
Volumen:87
Número:3
Página de inicio:158
Página de fin:166
DOI: http://dx.doi.org/10.1002/qua.10043
Título revista:International Journal of Quantum Chemistry
Título revista abreviado:Int J Quantum Chem
ISSN:00207608
CODEN:IJQCB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00207608_v87_n3_p158_Scherlis

Referencias:

  • Strayer, L., (1995) Biochemistry, , W. H. Freeman: New York
  • Harris, D., Loew, G., Waskell, L., (1998) J Am Chem Soc, 120, p. 4308
  • Scherlis, D.A., Cymeryng, C.B., Estrin, D.A., (2000) Inorg Chem, 39, p. 2352
  • Kozlowski, P.M., Spiro, T.G., Bérces, A., Zgierski, M.Z., (1998) J Phys Chem B, 102, p. 2603
  • Rovira, C., Kunc, K., Hutter, J., Ballone, P., Parrinello, M., (1997) J Phys Chem A, 101, p. 8914
  • Siegbahn, P.E.M., Blomberg, M.R.A., (2000) Chem Rev, 100, p. 421
  • Perutz, M.F., (1970) Nature, 228, p. 726
  • Hoard, J.L., (1971) Science, 174, p. 1295
  • Collman, J.P., Reed, C.A., (1973) J Am Chem Soc, 95, p. 2048
  • Spartalian, K., Lang, G., Collman, J.P., Gagne, R.R., Reed, C.A., (1975) J Chem Phys, 63, p. 5375
  • Jamenson, G.B., Molinaro, F., Ibers, A., Collman, J.P., Brauman, J.I., Rose, E., Suslick, K.S., (1980) J Am Chem Soc, 102, p. 3224
  • Maseras, F., (1998) New J Chem, 22, p. 327
  • Jewsbury, P., Yamamoto, S., Minato, T., Saito, M., Kitagawa, T., (1995) J Phys Chem, 99, p. 12677
  • Marques, H.M., Munro, O.Q., Grimmer, N.E., Levendis, D.C., Marsicano, F., Pattrick, G., Markoulides, T., (1995) J Chem Soc Faraday Trans, 91, p. 1741
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (1998) Gaussian98, Revision A.7, , Gaussian, Inc., Pittsburgh, PA
  • Schäfer, A., Huber, C., Ahlrichs, R., (1994) J Chem Phys, 100, p. 5829
  • Godbout, N., Salahub, D.R., Andzelm, J., Wimmer, E., (1992) Can J Chem, 70, p. 560
  • Dolg, M., Wedig, U., Stoll, H., Preuss, H., (1987) J Chem Phys, 86, p. 2123
  • Møller, C., Plesset, M.S., (1934) Phys Rev, 46, p. 618
  • Head-Gordon, M., Pople, J.A., Frisch, M.J., (1988) Chem Phys Lett, 153, p. 503
  • Frisch, M.J., Head-Gordon, M., Pople, J.A., (1990) Chem Phys Lett, 166, p. 275
  • Frisch, M.J., Head-Gordon, M., Pople, J.A., (1990) Chem Phys Lett, 166, p. 281
  • Saebo, S., Almlof, J., (1989) Chem Phys Lett, 154, p. 83
  • Becke, A.D., (1988) Phys Rev A, 38, p. 3098
  • Perdew, J.P., (1986) Phys Rev B, 33, p. 8822
  • Lee, C., Yang, W., Parr, R.G., (1988) Phys Rev B, 37, p. 785
  • Vosko, S.H., Wilk, L., Nusair, M., (1980) Can J Phys, 58, p. 1200
  • Becke, A.D., (1993) J Chem Phys, 98, p. 5648
  • Becke, A.D., (1993) J Chem Phys, 98, p. 1372
  • Harris, J., Jones, R.O., (1974) J Phys F, 4, p. 1170
  • Gunnarsson, O., Lundqvist, B.I., (1976) Phys Rev B, 13, p. 4274
  • Langreth, D.C., Perdew, J.P., (1977) Phys Rev B, 15, p. 2884
  • Harris, J., (1984) Phys Rev A, 29, p. 1648
  • Harris, D., Loew, G.H., Komornicki, A., (1997) J Phys Chem A, 101, p. 3959
  • Holthausen, M.C., Fiedler, A., Schwarz, H., Koch, W., (1996) J Phys Chem, 100, p. 6236
  • (2000), http://physics.nist.gov, Atomic spectra database at the National Institute of Standards and Technology; June; Russo, T.V., Martin, R.L., Hay, P.J., (1994) J Chem Phys, 101, p. 7729
  • Glukkhovtsev, M.N., Bach, R.D., Nagel, C.J., (1997) J Phys Chem A, 101, p. 316
  • Liu, Y., (2001) J Chem Inf Comput Sci, 41, p. 22
  • Scheidt, W.R., Reed, C.A., (1981) Chem Rev, 81, p. 543
  • Lee, X.Y., Zgierski, M.Z., (1992) Chem Phys Lett, 188, p. 16
  • Scheidt, W.R., Geiger, D.K., (1974) J Chem Soc Chem Commun, p. 1154
  • Létard, J.F., Guionneau, P., Rabardel, L., Howard, J.A.K., Goeta, A.E., Chasseau, D., Kahn, O., (1998) Inorg Chem, 37, p. 4432
  • Blakesley, D.W., Payne, S.C., Hagen, K.S., (2000) Inorg Chem, 39, p. 1979
  • Momenteau, M., Reed, C.A., (1994) Chem Rev, 94, p. 659
  • Olafson, B.D., Goddard III, W.A., Proc Natl Acad Sci USA 1977, 74, p. 1315
  • Goddard III, W.A., Olafson, B.D., Proc Natl Acad Sci USA 1975, 72, p. 2335
  • Vasquez, G.B., Ji, X., Pechik, I., Fronticelli, C., Gilliland, G.L., X-ray structure of alpha-oxy, beta-(C112g)deoxy human hemoglobin http://www.ncbi.nlm.nih.gov, PDB Id: 1GBV. Protein Data Bank at National Library of Medicine (US); Rovira, C., Parrinello, M., (1998) Int J Quantum Chem, 70, p. 387
  • Görling, A., (1999) Phys Rev Lett, 83, p. 5459

Citas:

---------- APA ----------
Scherlis, D.A. & Estrin, D.A. (2002) . Structure and spin-state energetics of an iron porphyrin model: An assessment of theoretical methods. International Journal of Quantum Chemistry, 87(3), 158-166.
http://dx.doi.org/10.1002/qua.10043
---------- CHICAGO ----------
Scherlis, D.A., Estrin, D.A. "Structure and spin-state energetics of an iron porphyrin model: An assessment of theoretical methods" . International Journal of Quantum Chemistry 87, no. 3 (2002) : 158-166.
http://dx.doi.org/10.1002/qua.10043
---------- MLA ----------
Scherlis, D.A., Estrin, D.A. "Structure and spin-state energetics of an iron porphyrin model: An assessment of theoretical methods" . International Journal of Quantum Chemistry, vol. 87, no. 3, 2002, pp. 158-166.
http://dx.doi.org/10.1002/qua.10043
---------- VANCOUVER ----------
Scherlis, D.A., Estrin, D.A. Structure and spin-state energetics of an iron porphyrin model: An assessment of theoretical methods. Int J Quantum Chem. 2002;87(3):158-166.
http://dx.doi.org/10.1002/qua.10043