Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Accurate calculations of some response properties, like the NMR spectroscopic parameters, are quite exigent for the theoretical quantum chemistry models together with the computational codes that are written from them. They need to include a very good description of the electronic density in regions close to the nuclei. When heavy-atom containing systems are studied, those requirements become even higher. Given that relativistic effects must be included in one way or another on the calculation of response properties of heavy-atoms and heavy-atom containing molecules, different schemes were developed during the past decades to include them in as good as possible way. There are some four-component models, which include relativistic effects in a very compact way, although calculations have large time-consumption; one also needs to deal with new and unusual four-component operators. There are also two-component models, which in general may be less accurate, although their application to property calculations on medium-size and large-size molecules are feasible, and they maintain the application of usual operators. In this review, we give the fundamentals of the two-component linear response elimination of small component formalism, LRESC, together with some applications to few selected response properties. New physical insights do appear when the LRESC model is used to analyze the effect of the environment on magnetic shieldings, and when one search for the relativistic extension of well-known nonrelativistic relationships like Flygare's relation among the NMR magnetic shielding and the nuclear spin-rotation constant. A similar relationship is found for the g-tensor and the susceptibility tensor. © 2017 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:Foundations of the LRESC model for response properties and some applications
Autor:Aucar, G.A.; Melo, J.I.; Aucar, I.A.; Maldonado, A.F.
Filiación:Instituto de Modelado e Innovación Tecnológica, CONICET-UNNE, and Departamento de Física, FCENA-UNNE, Avda. Libertad 5460, Corrientes, W3404AAS, Argentina
Instituto de Física de Buenos Aires, CONICET, and Departamento de Física, FCEN-UBA, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
Palabras clave:g-tensor; NMR; response properties; spin-rotation tensor; two-component methods; Computational chemistry; Magnetic shielding; Molecules; Nuclear magnetic resonance; Quantum chemistry; Relativity; Shielding; Spin dynamics; Tensors; Accurate calculations; G tensors; Relativistic effects; Response properties; Spectroscopic parameters; Spin-rotations; Susceptibility tensors; Two-component methods; Atoms
Año:2018
Volumen:118
Número:1
DOI: http://dx.doi.org/10.1002/qua.25487
Título revista:International Journal of Quantum Chemistry
Título revista abreviado:Int J Quantum Chem
ISSN:00207608
CODEN:IJQCB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00207608_v118_n1_p_Aucar

Referencias:

  • Pyykkö, P., (1978) Adv. Quantum Chem., 11, p. 353
  • Pyykkö, P., (1977) Chem. Phys., 22, p. 289
  • Lohr, L.L.J., Pyykkö, P., (1979) Chem. Phys. Lett., 62, p. 333
  • Aucar, G.A., Contreras, R.H., (1991) J. Magn. Reson., 93, p. 413
  • Contreras, R.H., Ruiz de Azúa, M.C., Giribet, C.G., Aucar, G.A., Lobayan de Bonczok, R.M., (1993) J. Molec. Struct. (Theochem), 284, p. 249
  • Lobayan, R.M., Aucar, G.A., (1998) J. Molec. Struct. (Theochem), 452, p. 1
  • Iliaš, M., Kello, V., Urban, M., (2010) Phys. Slov. Rev. Tut., 60, p. 259
  • Fleig, T., (2012) Chem. Phys., 395, p. 2
  • Pyykkö, P., (2012) Chem. Rev., 112, p. 371
  • Rusakov, Y.Y., Krivdin, L.B., (2013) Russ. Chem. Rev., 82, p. 99
  • Autschbach, J., (2014) Phil. Trans. R. Soc. A, 372, p. 20120489
  • Liu, W., (2014) Phys. Rep., 537, p. 59
  • Quiney, H.H., Skaane, H., Grant, I.P., (1998) Chem. Phys. Lett., 290, p. 473
  • Helgaker, T., Jaszuński, M., Pecul, M., (2008) Prog. in NMR Spect., 53, p. 249
  • Saue, T., (2011) ChemPhysChem., 12, p. 3077
  • Autschbach, J., (2017) J. Chem. Theory Comput., 13, p. 710
  • Oddershede, J., (1978) Adv. Quantum. Chem., 11, p. 257
  • Oddershede, J., Jorgensen, P., Yeager, D.L., (1984) Comp. Phys. Rep., 2, p. 33
  • Aucar, G.A., Romero, R.H., Maldonado, A.F., (2010) Int. Rev. Phys. Chem., 29, p. 1
  • Aucar, G.A., (2014) Phys. Chem. Chem. Phys., 16, p. 4420
  • Aucar, G.A., Oddershede, J., (1993) Int. J. Quantum Chem., 47, p. 425
  • Aa. Jensen, H.J., Bast, R., Saue, T., Visscher, L., Bakken, V., Dyall, K.G., Dubillard, S., Yamamoto, S., http://www.diracprogram.org, written by, with contributions from, (see; Aucar, G.A., Saue, T., Visscher, L., Jensen, H.J.A., (1999) J. Chem. Phys., 110, p. 6208
  • Xiao, Y., Liu, W., Ruud, K., (2017) Relativistic Theory of Nuclear Spin-Rotation Tensor, pp. 693-723. , Springer Berlin Heidelberg, Berlin, Heidelberg
  • Fukui, H., Baba, T., Inomata, H., (1996) J. Chem. Phys., 105, p. 3175
  • Melo, J.I., Ruiz de Azúa, M.C., Giribet, C.G., Aucar, G.A., Romero, R.H., (2003) J. Chem. Phys., 118, p. 471
  • Melo, J.I., Ruiz de Azúa, M.C., Giribet, C.G., Aucar, G.A., Provasi, P.F., (2004) J. Chem. Phys., 121, p. 6798
  • Manninen, P., Lantto, P., Vaara, J., Ruud, K., (2003) J. Chem. Phys., 119, p. 2623
  • Vaara, J., (2007) Phys. Chem. Chem. Phys., 9, p. 5399
  • Aucar, I.A., Gomez, S.S., Ruiz de Azúa, M.C., Giribet, C.G., (2012) J. Chem. Phys., 136, p. 204119
  • Aucar, I.A., Gomez, S.S., Melo, J.I., Giribet, C.G., Ruiz de Azúa, M.C., (2013) J. Chem. Phys., 138, p. 134107
  • Aucar, I.A., Gomez, S.S., Giribet, C.G., Ruiz de Azúa, M.C., (2014) J. Chem. Phys., 141, p. 194103
  • Aa. Jensen, H.J., Dyall, K.G., Saue, T., Fægri, K., (1996) J. Chem. Phys., 104, p. 4083. , (Jr.)
  • Abe, M., Nakajima, T., Hirao, K., (2006) J. Chem. Phys., 125, p. 234110
  • Knecht, S., Legeza, Ö., Reiher, M., (2014) J. Chem. Phys., 140, p. 041101
  • Bieroń, J., Fischer, C.F., Fritzsche, S., Gaigalas, G., Grant, I.P., Indelicato, P., Jönsson, P., Pyykkö, P., (2015) Physica Scripta, 90, p. 054011
  • Almoukhalalati, A., Knecht, S., Aa. Jensen, H.J., Dyall, K.G., Saue, T., (2016) J. Chem. Phys., 145, p. 074104
  • Liu, W., Lindgren, I., (2013) J. Chem. Phys., 139, p. 014108
  • Liu, W., (2016) Nat. Sci. Rev., 3, p. 204
  • Fleig, T., Chem. Phys. 395, 2 (2012b), recent Advances and Applications of Relativistic Quantum Chemistry; Repisky, M., Komorovsky, S., Bast, R., Ruud, K., (2016), pp. 267-303. , in, Gas Phase NMR, (The Royal Society of Chemistry; (2012), ReSpect, version 3.2,, Felativistic Spectroscopy DFT Program of Authors Repisky, M., Komorovsky, S., Malkin, V. G., Malkina, O. L., Ruud, K., Kaupp, M., with contributions from Arbuznikov, A. V., Bast, R., Ekström, U., Malkin, I., Malkin, E; Komorovsky, S., Repisky, M., Malkina, O.L., Malkin, V.G., Malkin, O.I., Kaupp, M., (2008) J. Chem. Phys., 128, p. 104101
  • Komorovsky, S., Repisky, M., Malkin, E., Demissie, T.B., Ruud, K., (2015) J. Chem. Theory Comput., 11, p. 3729
  • Saue, T., Helgaker, T., (2002) J. Comput. Chem., 23, p. 814
  • Fossgaard, O., Gropen, O., Valero, M.C., Saue, T., (2003) J. Chem. Phys., 118, p. 10418
  • Saue, T., Jensen, H.J.A., (2003) J. Chem. Phys., 118, p. 522
  • Cheng, L., Xiao, Y., Liu, W., (2009) J. Chem. Phys., 130, p. 144102
  • Xiao, Y., Liu, W., (2013) J. Chem. Phys., 138, p. 134104
  • Xiao, Y., Zhang, Y., Liu, W., (2014) J. Chem. Phys., 141, p. 164110
  • Visscher, L., Enevoldsen, T., Saue, T., Aa. Jensen, H.J., Oddershede, J., (1999) J. Comput. Chem., 20, p. 1262
  • Iliaš, M., Aa. Jensen, H.J., Bast, R., Saue, T., (2013) Mol. Phys., 111, p. 1373
  • Olejniczak, M., Bast, R., Pereira Gomes, A.S., (2017) Phys. Chem. Chem. Phys., 19, p. 8400
  • Kudo, K., Maeda, H., Kawakubo, T., Ootani, Y., Funaki, M., Fukui, H., (2006) J. Chem. Phys., 124, p. 224106
  • Douglas, M., Kroll, N.M., (1974) Ann. Phys., 82, p. 89
  • Hess, B., (1985) Phys. Rev. A, 32, p. 756
  • Hess, B., (1986) Phys. Rev. A, 33, p. 3742
  • Reiher, M., Wolf, A., (2004) J. Chem. Phys., 121, p. 2037
  • Sikkema, J., Visscher, L., Saue, T., Iliaš, M., (2009) J. Chem. Phys., 131, p. 124116
  • Chang, C., Pelissier, M., Durand, M., (1986) Phys. Scr., 34, p. 394
  • van Lenthe, E., Baerends, E.J., Snijders, J.G., (1993) J. Chem. Phys., 101, p. 9783
  • van Lenthe, E., Baerends, E.J., Snijders, J.G., (1993) J. Chem. Phys., 99, p. 4597
  • Yoshizawa, T., Zou, W., Cremer, D., (2017) J. Chem. Phys., 146, p. 134109
  • Iliaš, M., Aa. Jensen, H.J., Kellö, V., Roos, B.O., Urban, M., (2005) Chem. Phys. Lett., 408, p. 210
  • Kutzelnigg, W., Liu, W., (2005) J. Chem. Phys., 123, p. 241102
  • Iliaš, M., Saue, T., (2007) J. Chem. Phys., 126, p. 064102
  • Liu, W., (2010) Molec. Phys., 108, p. 1679
  • Peng, D., Reiher, M., (2012) Theor. Chem. Acc., 131. , 1081
  • Zaccari, D., Ruiz de Azúa, M.C., Melo, J.I., Giribet, C.G., (2006) J. Chem. Phys., 124, p. 054103
  • Kutzelnigg, W., (2003) Phys. Rev. A, 67, p. 032109
  • Bethe, H.A., Salpeter, E.E., (1977), Quantum Mechanics of One- and Two- Electron Atoms, (Plenum Press, New York,,), 1st ed; Labzowsky, L.N., Klimchirskaya, G.L., Dmitriev, Y.Y., Relativistic Effects in the Spectra of Atomic Systems, (IOP, Philadelphia, 1993), 1st ed; Manninen, P., Ruud, K., Lantto, P., Vaara, J., (2005) J. Chem. Phys., 122, p. 114107
  • Flygare, W.H., (1974) Chem. Rev., 74, p. 653
  • Aucar, I.A., (2015), Ph.D. thesis, Universidad Nacional del Nordeste. Argentina; Xiao, Y., Liu, W., (2013) J. Chem. Phys., 139, p. 034113
  • Aucar, I.A., Gomez, S.S., Giribet, C.G., Aucar, G.A., (2016) Phys. Chem. Chem. Phys., 18, p. 23572
  • Flygare, W.H., (1964) J. Chem. Phys., 41, p. 793
  • Mohr, P.J., Taylor, B.N., Newell, D.B., (2012) J. Phys. Chem. Ref. Data, 41, p. 043109
  • Malkin, E., Komorovsky, S., Repisky, M., Demissie, T.B., Ruud, K., (2013) J. Phys. Chem. Lett., 4, p. 459
  • Jaszuński, M., Repisky, M., Demissie, T.B., Komorovsky, S., Malkin, E., Ruud, K., Garbacz, P., Makulski, W., (2013) J. Chem. Phys., 139, p. 234302
  • Jaszuński, M., Demissie, T.B., Ruud, K., (2014) J. Phys. Chem. A, 118, p. 9588
  • Ruud, K., Demissie, T.B., Jaszuński, M., (2014) J. Chem. Phys., 140, p. 194308
  • Komorovsky, S., Repisky, M., Malkin, E., Ruud, K., Gauss, J., (2015) J. Chem. Phys., 142, p. 091102
  • Demissie, T.B., Jaszuński, M., Malkin, E., Komorovsky, S., Ruud, K., (2015) Molecular Physics, 113, p. 1576
  • Demissie, T.B., Jaszuński, M., Komorovsky, S., Repisky, M., Ruud, K., (2015) J. Chem. Phys., 143, p. 164311
  • Demissie, T.B., (2015) Phys. Chem. Chem. Phys., 18, p. 3112
  • Adrjan, B., Makulski, W., Jackowski, Demissie, T.B., Ruud, K., Antusek, A., Jaszuński, M., (2016) Phys. Chem. Chem. Phys., 18, p. 16483
  • Aucar, I.A., Gomez, S.S., Giribet, C.G., Aucar, G.A., (2016) J. Phys. Chem. Lett., 7, p. 5188
  • Vaara, J., Pyykkö, P., (2003) J. Chem. Phys., 118, p. 2973
  • (2015), http://daltonprogram.org, Dalton, a molecular electronic structure program, Release Dalton2016.1; Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., ÅAgren, H., The Dalton quantum chemistry program system (2014) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 4, p. 269
  • Ruiz de Azúa, M.C., Melo, J.I., Giribet, C.G., (2003) Mol. Phys., 101, p. 3103
  • Gomez, S., Melo, J.I., Romero, R.H., Aucar, G.A., Ruiz de Azúa, M.C., (2005) J. Chem. Phys., 122, p. 064103
  • Kutzelnigg, W., (1999) J. Comput. Chem., 20, p. 1199
  • Roura, P.G., Melo, J.I., Ruiz de Azúa, M.C., Giribet, C.G., (2006) J. Chem. Phys., 125, p. 064107
  • Hess, B.A., Marian, C.M., Wahlgren, U., Grospen, O., (1996) Chem. Phys. Lett., 251, p. 365
  • Malkina, O.L., Schimmelpfenning, B., Kaupp, M., Hess, B., Chandra, P., Wahlgren, U., Malkin, V.G., (1998) Chem. Phys. Lett., 296, p. 93
  • Zaccari, D., Melo, J.I., Ruiz de Azúa, M.C., Giribet, C.G., (2009) J. Chem. Phys., 130, p. 084102
  • Manninen, P., Ruud, K., Lantto, P., Vaara, J., (2006) J. Chem. Phys., 124, p. 149901
  • Hanni, M., Lantto, P., Iliaš, M., Aa. Jensen, H.J., Vaara, J., (2007) J. Chem. Phys., 127, p. 164313
  • Maldonado, A.F., Aucar, G.A., Melo, J.I., (2014) J. Mol. Model, 20, p. 2417
  • Maldonado, A.F., Melo, J.I., Aucar, G.A., (2015) Phys. Chem. Chem. Phys., 17, p. 25516
  • Florez, E., Maldonado, A.F., Aucar, G.A., David, J., Restrepo, A., (2016) Phys. Chem. Chem. Phys., 18, p. 1537
  • Melo, J.I., Maldonado, A.F., Aucar, G.A., (2011) Theor. Chem. Acc., 129, p. 483
  • Arcisauskaite, V., Melo, J.I., Hemmingsen, L., Sauer, S.P.A., (2011) J. Chem. Phys., 135, p. 044306
  • Maldonado, A.F., Aucar, G.A., (2009) Phys. Chem. Chem. Phys., 11, p. 5615
  • Ruiz de Azúa, M.C., Giribet, C.G., Melo, J.I., (2011) J. Chem. Phys., 134, p. 034123
  • Antusek, A., Pecul, M., Sadlej, J., (2006) Chem. Phys. Lett., 281, p. 427
  • Ingman, L.P., Jokisaari, J., Oikarinen, K., Seydoux, R., (1994) J. Magn. Reson., Ser. A, 111, p. 155
  • Forgeron, M.A.M., Wasylishen, R.E., Penner, G.H., (2004) J. Phys. Chem. A, 108, p. 4751
  • Dunning, T.H., (1989) J. Chem. Phys., 90, p. 1007
  • Dyall, K.G., (2006) Theor. Chem. Acc., 115, p. 441
  • (1984), 2. , Handbook of Chemistry, (The Chemical Society of Japan Kagaku Benran (Maruzen Company, Tokyo),,), 3rd ed; Huber, K.P., Herzberg, G., (1979) Constants of Diatomic Molecules, , Nostrand Reinhold, New York

Citas:

---------- APA ----------
Aucar, G.A., Melo, J.I., Aucar, I.A. & Maldonado, A.F. (2018) . Foundations of the LRESC model for response properties and some applications. International Journal of Quantum Chemistry, 118(1).
http://dx.doi.org/10.1002/qua.25487
---------- CHICAGO ----------
Aucar, G.A., Melo, J.I., Aucar, I.A., Maldonado, A.F. "Foundations of the LRESC model for response properties and some applications" . International Journal of Quantum Chemistry 118, no. 1 (2018).
http://dx.doi.org/10.1002/qua.25487
---------- MLA ----------
Aucar, G.A., Melo, J.I., Aucar, I.A., Maldonado, A.F. "Foundations of the LRESC model for response properties and some applications" . International Journal of Quantum Chemistry, vol. 118, no. 1, 2018.
http://dx.doi.org/10.1002/qua.25487
---------- VANCOUVER ----------
Aucar, G.A., Melo, J.I., Aucar, I.A., Maldonado, A.F. Foundations of the LRESC model for response properties and some applications. Int J Quantum Chem. 2018;118(1).
http://dx.doi.org/10.1002/qua.25487