De Vas, M.G.; Portal, P.; Alonso, G.D.; Schlesinger, M.; Flawiá, M.M.; Torres, H.N.; Villamil, S.F.; Paveto, C. "The NADPH-cytochrome P450 reductase family in Trypanosoma cruzi is involved in the sterol biosynthesis pathway" (2011) International Journal for Parasitology. 41(1):99-108
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Trypanosoma cruzi flavoproteins TcCPR-A, TcCPR-B and TcCPR-C are members of the NADPH-dependent cytochrome P-450 reductase family expressed in the parasite. Epimastigotes over-expressing TcCPR-B and TcCPR-C showed enhanced ergosterol biosynthesis and increased NADP+/NADPH ratio. Transgenic parasites with augmented ergosterol content presented a higher membrane order with a corresponding diminished bulk-phase endocytosis. These results support a significant role for TcCPR-B and TcCPR-C in the sterol biosynthetic pathway and to our knowledge for the first time reveals the participation of more than one CPR in this metabolic route. Notably, TcCPR-B was found in reservosomes while TcCPR-C localised in the endoplasmic reticulum. In addition, we suggest a different role for TcCPR-A, since its over-expression is lethal, displaying cells with an increased DNA content, aberrant morphology and severe ultrastructural alterations. © 2010 Australian Society for Parasitology Inc.


Documento: Artículo
Título:The NADPH-cytochrome P450 reductase family in Trypanosoma cruzi is involved in the sterol biosynthesis pathway
Autor:De Vas, M.G.; Portal, P.; Alonso, G.D.; Schlesinger, M.; Flawiá, M.M.; Torres, H.N.; Villamil, S.F.; Paveto, C.
Filiación:Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular (INGEBI) CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
INSERM U969, CNRS UMR7622, Université Pierre et Marie Curie, 9 quai Saint Bernard, Case 24, 75252 Paris, Cedex05, France
Palabras clave:NADPH-dependent cytochrome P450 reductases; Sterol metabolism; Trypanosoma cruzi; genomic DNA; reduced nicotinamide adenine dinucleotide phosphate ferrihemoprotein reductase; cytochrome; enzyme activity; gene expression; metabolism; parasite; sterol; article; cellular distribution; controlled study; DNA content; endocytosis; endoplasmic reticulum; Escherichia coli; gene overexpression; immunofluorescence microscopy; membrane fluidity; membrane permeability; morphology; nonhuman; nucleotide sequence; oxidation reduction state; protein determination; protein expression; protein function; sterol synthesis; transgene; Trypanosoma cruzi; Animals; Biosynthetic Pathways; Cell Membrane; Gene Expression; NADP; NADPH-Ferrihemoprotein Reductase; Organelles; Phagocytosis; Sterols; Trypanosoma cruzi; Trypanosoma cruzi
Página de inicio:99
Página de fin:108
Título revista:International Journal for Parasitology
Título revista abreviado:Int. J. Parasitol.
CAS:reduced nicotinamide adenine dinucleotide phosphate ferrihemoprotein reductase, 9023-03-4; NADP, 53-59-8; NADPH-Ferrihemoprotein Reductase,; Sterols


  • Albi, E., Viola Magni, M.P., The role of intranuclear lipids (2004) Biol. Cell, 96, pp. 657-667
  • Aoyama, Y., Yoshida, Y., Sonoda, Y., Sato, Y., Deformylation of 32-oxo-24, 25-dihydrolanosterol by the purified cytochrome P-45014DM (lanosterol 14 alpha-demethylase) from yeast evidence confirming the intermediate step of lanosterol 14 alpha-demethylation (1989) J. Biol. Chem., 264, pp. 18502-18505
  • Aoyama, Y., Noshiro, M., Gotoh, O., Imaoka, S., Funae, Y., Kurosawa, N., Sterol 14-demethylase P450 (P45014DM*) is one of the most ancient and conserved P450 species (1996) J. Biochem., 119, pp. 926-933
  • Arora, A., Raghuraman, H., Chattopadhyay, A., Influence of cholesterol and ergosterol on membrane dynamics: a fluorescence approach (2004) Biochem. Biophys. Res. Commun., 318, pp. 920-926
  • Belenky, P., Bogan, K.L., Brenner, C., NAD+ metabolism in health and disease (2007) Trends Biochem. Sci., 32, pp. 12-19
  • Berger, F., Ramirez-Hernandez, M.H., Ziegler, M., The new life of a centenarian: signalling functions of NAD(P) (2004) Trends Biochem. Sci., 29, pp. 111-118
  • Bligh, E.G., Dyer, W.J., A rapid method of total lipid extraction and purification (1959) Can J Biochem Physiol, 37, pp. 911-917
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
  • Braga, M.V., Urbina, J.A., de Souza, W., Effects of squalene synthase inhibitors on the growth and ultrastructure of Trypanosoma cruzi (2004) Int. J. Antimicrob. Agents, 24, pp. 72-78
  • Cannon, R.D., Kerridge, D., Correlation between the sterol composition of membranes and morphology in Candida albicans (1988) J. Med. Vet. Mycol., 26, pp. 57-65
  • Conney, A.H., Pharmacological implications of microsomal enzyme induction (1967) Pharmacol. Rev., 19, pp. 317-366
  • Cournia, Z., Ullmann, G.M., Smith, J.C., Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane: a molecular dynamics simulation study (2007) J. Phys. Chem. B, 111, pp. 1786-1801
  • Das, A., Sligar, S.G., Modulation of the cytochrome P450 reductase redox potential by the phospholipid bilayer (2009) Biochemistry, 48, pp. 12104-12112
  • de Souza, W., Rodrigues, J.C., Sterol biosynthesis pathway as target for anti-trypanosomatid drugs (2009) Interdiscip Perspect Infect Dis, 2009, p. 642502
  • Denisov, I.G., Makris, T.M., Sligar, S.G., Schlichting, I., Structure and chemistry of cytochrome P450 (2005) Chem. Rev., 105, pp. 2253-2277
  • Dixon, H., Ginger, C.D., Williamson, J., Trypanosome sterols and their metabolic origins (1972) Comp Biochem Physiol B, 41, pp. 1-18
  • Esteves, M.G., Gonzales-Perdomo, M., Alviano, C.S., Angluster, J., Goldenberg, S., Changes in fatty acid composition associated with differentiation of Trypanosoma cruzi (1989) FEMS Microbiol. Lett., 50, pp. 31-34
  • Florin-Christensen, M., Florin-Christensen, J., de Isola, E.D., Lammel, E., Meinardi, E., Brenner, R.R., Rasmussen, L., Temperature acclimation of Trypanosoma cruzi epimastigote and metacyclic trypomastigote lipids (1997) Mol. Biochem. Parasitol., 88, pp. 25-33
  • Garzoni, L.R., Caldera, A., Meirelles Mde, N., de Castro, S.L., Docampo, R., Meints, G.A., Selective in vitro effects of the farnesyl pyrophosphate synthase inhibitor risedronate on Trypanosoma cruzi (2004) Int. J. Antimicrob. Agents, 23, pp. 273-285
  • Gelboin, H.V., Carcinogens, enzyme induction, and gene action (1967) Adv. Cancer Res., 10, pp. 1-81
  • Gibbs, R.A., Weinstock, G.M., Metzker, M.L., Muzny, D.M., Sodergren, E.J., Scherer, Genome sequence of the Brown Norway rat yields insights into mammalian evolution (2004) Nature, 428, pp. 493-521
  • Gillette, J.R., Biochemistry of drug oxidation and reduction by enzymes in hepatic endoplasmic reticulum (1966) Adv. Pharmacol., 4, pp. 219-261
  • Gillette, J.R., Davis, D.C., Sasame, H.A., Cytochrome P-450 and its role in drug metabolism (1972) Annu Rev Pharmacol, 12, pp. 57-84
  • Gonzalez-Kristeller, D.C., Farage, L., Fiorini, L.C., Loomis, W.F., da Silva, A.M., The P450 oxidoreductase, RedA, controls development beyond the mound stage in Dictyostelium discoideum (2008) BMC Dev. Biol, 8, p. 8
  • Guhl, F., Chagas disease in Andean countries (2007) Mem. Inst. Oswaldo Cruz, 102 (SUPPL. 1), pp. 29-38
  • Hankins, E.G., Gillespie, J.R., Aikenhead, K., Buckner, F.S., Upregulation of sterol C14-demethylase expression in Trypanosoma cruzi treated with sterol biosynthesis inhibitors (2005) Mol. Biochem. Parasitol., 144 (1), pp. 68-75
  • Hammarton, T.C., Monnerat, S., Mottram, J.C., Cytokinesis in trypanosomatids (2007) Curr. Opin. Microbiol., 10, pp. 520-527
  • Hannemann, F., Bichet, A., Ewen, K.M., Bernhardt, R., Cytochrome P450 systems - biological variations of electron transport chains (2007) Biochim. Biophys. Acta, 1770, pp. 330-344
  • Iyanagi, T., Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain (2005) Biochem. Biophys. Res. Commun., 338, pp. 520-528
  • Jandrositz, A., Turnowsky, F., Hogenauer, G., The gene encoding squalene epoxidase from Saccharomyces cerevisiae: cloning and characterization (1991) Gene, 107, pp. 155-160
  • Kaneda, Y., Nagakura, K., Goutsu, T., Lipid composition of three morphological stages of Trypanosoma cruzi (1986) Comp Biochem Physiol B, 83, pp. 533-536
  • Kelly, S.L., Lamb, D.C., Corran, A.J., Baldwin, B.C., Parks, L.W., Kelly, D.E., Purification and reconstitution of activity of Saccharomyces cerevisiae P450 61, a sterol delta 22-desaturase (1995) FEBS Lett., 377, pp. 217-220
  • Koopmann, E., Hahlbrock, K., Differentially regulated NADPH:cytochrome P450 oxidoreductases in parsley (1997) Proc. Natl Acad. Sci. USA, 94, pp. 14954-14959
  • Korn, E.D., Von Brand, T., Tobie, E.J., The sterols of Trypanosoma cruzi and Crithidia fasciculata (1969) Comp. Biochem. Physiol., 30, pp. 601-610
  • Kuwahara, T., White, R.A., Agosin, M., A cytosolic FAD-containing enzyme catalyzing cytochrome c reduction in Trypanosoma cruzi. I. Purification and some properties (1985) Arch. Biochem. Biophys., 239, pp. 18-28
  • Kwasnicka-Crawford, D.A., Vincent, S.R., Role of a novel dual flavin reductase (NR1) and an associated histidine triad protein (DCS-1) in menadione-induced cytotoxicity (2005) Biochem. Biophys. Res. Commun., 336, pp. 565-571
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
  • Lees, N.D., Broughton, M.C., Sanglard, D., Bard, M., Azole susceptibility and hyphal formation in a cytochrome P-450-deficient mutant of Candida albicans (1990) Antimicrob. Agents Chemother., 34, pp. 831-836
  • Lees, N.D., Skaggs, B., Kirsch, D.R., Bard, M., Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae - a review (1995) Lipids, 30, pp. 221-226
  • Lees, N.D., Bard, M., Kirsch, D.R., Biochemistry and molecular biology of sterol synthesis in Saccharomyces cerevisiae (1999) Crit. Rev. Biochem. Mol. Biol., 34, pp. 33-47
  • Leonardo, M.R., Dailly, Y., Clark, D.P., Role of NAD in regulating the adhE gene of Escherichia coli (1996) J. Bacteriol., 178, pp. 6013-6018
  • Lepesheva, G.I., Hargrove, T.Y., Anderson, S., Kleshchenko, Y., Futak, V., Wawrzak, Z., Villalta, F., Waterman, M.R., Structural insights into inhibition of sterol 14α-demethylase in the human pathogen Trypanosoma cruzi. J. Biol. Chem., (in press); Matsumura, H., Miyachi, S., Cycling assay for nicotinamide adenine dinucleotides (1980) Methods Enzymol., 69, pp. 465-470
  • Mercer, E.I., Inhibitors of sterol biosynthesis and their applications (1993) Prog. Lipid Res., 32, pp. 357-416
  • Meyer, H., Holz, G.G., Biosynthesis of lipids by kinetoplastid flagellates (1966) J. Biol. Chem., 241, pp. 5000-5007
  • Mukhopadhyay, K., Kohli, A., Prasad, R., Drug susceptibilities of yeast cells are affected by membrane lipid composition (2002) Antimicrob. Agents Chemother., 46, pp. 3695-3705
  • Murataliev, M.B., Feyereisen, R., Walker, F.A., Electron transfer by diflavin reductases (2004) Biochim. Biophys. Acta, 1698, pp. 1-26
  • Nicoletti, I., Migliorati, G., Pagliacci, M.C., Grignani, F., Riccardi, C., A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry (1991) J. Immunol. Methods, 139, pp. 271-279
  • Nyholm, T., Nylund, M., Soderholm, A., Slotte, J.P., Properties of palmitoyl phosphatidylcholine, sphingomyelin, and dihydrosphingomyelin bilayer membranes as reported by different fluorescent reporter molecules (2003) Biophys. J., 84, pp. 987-997
  • Paine, M.J., Garner, A.P., Powell, D., Sibbald, J., Sales, M., Pratt, N., Cloning and characterization of a novel human dual flavin reductase (2000) J. Biol. Chem., 275, pp. 1471-1478
  • Parasassi, T., De Stasio, G., d'Ubaldo, A., Gratton, E., Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence (1990) Biophys. J., 57, pp. 1179-1186
  • Parks, L.W., Casey, W.M., Physiological implications of sterol biosynthesis in yeast (1995) Annu. Rev. Microbiol., 49, pp. 95-116
  • Pena-Diaz, J., Montalvetti, A., Flores, C.L., Constan, A., Hurtado-Guerrero, R., De Souza, W., Mitochondrial localization of the mevalonate pathway enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae (2004) Mol. Biol. Cell, 15, pp. 1356-1363
  • Pereira, C.A., Alonso, G.D., Paveto, M.C., Iribarren, A., Cabanas, M.L., Torres, H.N., Flawia, M.M., Trypanosoma cruzi arginine kinase characterization and cloning. A novel energetic pathway in protozoan parasites (2000) J. Biol. Chem., 275, pp. 1495-1501
  • Pollak, N., Dolle, C., Ziegler, M., The power to reduce: pyridine nucleotides - small molecules with a multitude of functions (2007) Biochem. J., 402, pp. 205-218
  • Portal, P., Villamil, S.F., Alonso, G.D., De Vas, M.G., Flawia, M.M., Torres, H.N., Paveto, C., Multiple NADPH-cytochrome P450 reductases from Trypanosoma cruzi suggested role on drug resistance (2008) Mol. Biochem. Parasitol., 160, pp. 42-51
  • Porter, T.D., Wilson, T.E., Kasper, C.B., Expression of a functional 78,000 dalton mammalian flavoprotein, NADPH-cytochrome P-450 oxidoreductase, in Escherichia coli (1987) Arch. Biochem. Biophys., 254, pp. 353-367
  • Quinones, W., Urbina, J.A., Dubourdieu, M., Luis Concepcion, J., The glycosome membrane of Trypanosoma cruzi epimastigotes: protein and lipid composition (2004) Exp. Parasitol., 106, pp. 135-149
  • Roberts, C.W., McLeod, R., Rice, D.W., Ginger, M., Chance, M.L., Goad, L.J., Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa (2003) Mol. Biochem. Parasitol., 126, pp. 129-142
  • Rodrigues, C.O., Catisti, R., Uyemura, S.A., Vercesi, A.E., Lira, R., Rodriguez, C., The sterol composition of Trypanosoma cruzi changes after growth in different culture media and results in different sensitivity to digitonin-permeabilization (2001) J. Eukaryot. Microbiol., 48, pp. 588-594
  • Rohloff, P., Montalvetti, A., Docampo, R., Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi (2004) J. Biol. Chem., 279, pp. 52270-52281
  • Sant'Anna, C., de Souza, W., Cunha, E.S.N., Biogenesis of the reservosomes of Trypanosoma cruzi (2004) Microsc. Microanal., 10, pp. 637-646
  • Sant'Anna, C., Nakayasu, E.S., Pereira, M.G., Lourenco, D., de Souza, W., Almeida, I.C., Cunha, E.S.N.L., Subcellular proteomics of Trypanosoma cruzi reservosomes (2009) Proteomics, 9, pp. 1782-1794
  • Santa-Rita, R.M., Lira, R., Barbosa, H.S., Urbina, J.A., de Castro, S.L., Anti-proliferative synergy of lysophospholipid analogues and ketoconazole against Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae): cellular and ultrastructural analysis (2005) J. Antimicrob. Chemother., 55, pp. 780-784
  • Skaggs, B.A., Alexander, J.F., Pierson, C.A., Schweitzer, K.S., Chun, K.T., Koegel, C., Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis (1996) Gene, 169, pp. 105-109
  • Urbina, J.A., Vivas, J., Ramos, H., Larralde, G., Aguilar, Z., Avilan, L., Alteration of lipid order profile and permeability of plasma membranes from Trypanosoma cruzi epimastigotes grown in the presence of ketoconazole (1988) Mol. Biochem. Parasitol., 30, pp. 185-195
  • Urbina, J.A., Ergosterol biosynthesis and drug development for Chagas disease (2009) Mem. Inst. Oswaldo Cruz, 104 (SUPPL. 1), pp. 311-318
  • Vanden Bossche, H., (1995) Chemotherapy of Human Fungal Infections, , Gustav Fisher Verlag, Jena, Germany
  • Vazquez, M.P., Levin, M.J., Functional analysis of the intergenic regions of TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector (1999) Gene, 239, pp. 217-225
  • Vernis, L., Facca, C., Delagoutte, E., Soler, N., Chanet, R., Guiard, B., A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast (2009) PLoS ONE, 4, pp. e4376
  • Ying, W., NAD+ and NADH in brain functions, brain diseases and brain aging (2007) Front Biosci, 12, pp. 1863-1888
  • Ying, W., NAD+ and NADH in neuronal death (2007) J Neuroimmune Pharmacol, 2, pp. 270-275
  • Ying, W., NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences (2008) Antioxid. Redox Signal., 10, pp. 179-206
  • Yoshida, Y., Cytochrome P450 of fungi: primary target for azole antifungal agents (1988) Curr. Top. Med. Mycol., 2, pp. 388-418


---------- APA ----------
De Vas, M.G., Portal, P., Alonso, G.D., Schlesinger, M., Flawiá, M.M., Torres, H.N., Villamil, S.F.,..., Paveto, C. (2011) . The NADPH-cytochrome P450 reductase family in Trypanosoma cruzi is involved in the sterol biosynthesis pathway. International Journal for Parasitology, 41(1), 99-108.
---------- CHICAGO ----------
De Vas, M.G., Portal, P., Alonso, G.D., Schlesinger, M., Flawiá, M.M., Torres, H.N., et al. "The NADPH-cytochrome P450 reductase family in Trypanosoma cruzi is involved in the sterol biosynthesis pathway" . International Journal for Parasitology 41, no. 1 (2011) : 99-108.
---------- MLA ----------
De Vas, M.G., Portal, P., Alonso, G.D., Schlesinger, M., Flawiá, M.M., Torres, H.N., et al. "The NADPH-cytochrome P450 reductase family in Trypanosoma cruzi is involved in the sterol biosynthesis pathway" . International Journal for Parasitology, vol. 41, no. 1, 2011, pp. 99-108.
---------- VANCOUVER ----------
De Vas, M.G., Portal, P., Alonso, G.D., Schlesinger, M., Flawiá, M.M., Torres, H.N., et al. The NADPH-cytochrome P450 reductase family in Trypanosoma cruzi is involved in the sterol biosynthesis pathway. Int. J. Parasitol. 2011;41(1):99-108.