Artículo

Mazaira, G.I.; Camisay, M.F.; De Leo, S.; Erlejman, A.G.; Galigniana, M.D. "Biological relevance of Hsp90-binding immunophilins in cancer development and treatment" (2016) International Journal of Cancer. 138(4):797-808
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Immunophilins are a family of intracellular receptors for immunosuppressive drugs. Those immunophilins that are related to immunosuppression are the smallest proteins of the family, i.e., FKBP12 and CyPA, whereas the other members of the family have higher molecular weight because the show additional domains to the drug-binding site. Among these extra domains, the TPR-domain is perhaps the most relevant because it permits the interaction of high molecular weight immunophilins with the 90-kDa heat-shock protein, Hsp90. This essential molecular chaperone regulates the biological function of several protein-kinases, oncogenes, protein phosphatases, transcription factors and cofactors. Hsp90-binding immunophilins where first characterized due to their association with steroid receptors. They regulate the cytoplasmic transport and the subcellular localization of these and other Hsp90 client proteins, as well as transcriptional activity, cell proliferation, cell differentiation and apoptosis. Hsp90-binding immunophilins are frequently overexpressed in several types of cancers and play a key role in cell survival. In this article we analyze the most important biological actions of the best characterized Hsp90-binding immunophilins in both steroid receptor function and cancer development and discuss the potential use of these immunophilins for therapeutic purposes as potential targets of specific small molecules. © 2015 UICC.

Registro:

Documento: Artículo
Título:Biological relevance of Hsp90-binding immunophilins in cancer development and treatment
Autor:Mazaira, G.I.; Camisay, M.F.; De Leo, S.; Erlejman, A.G.; Galigniana, M.D.
Filiación:Departamento de Química Biolõgica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
Palabras clave:FKBP38; FKBP51; FKBP52; FKBPL; NF-κB; steroid receptor; 1 (3,3 dimethyl 1,2 dioxopentyl) 2 pyrrolidinecarboxylic acid 3 (3 pyridyl)propyl ester; alm 201; bicalutamide; calcineurin inhibitor; calcium; cisplatin; cycloheximide; cyclophilin 40; cyclophilin A; etoposide; fk 506 binding protein 12; fk 506 binding protein 38; fk 506 binding protein 51; fk 506 binding protein 52; glucocorticoid receptor; heat shock protein 90; immunophilin; methotrexate; n (n',n' dimethylcarboxamidomethyl)cycloheximide; paclitaxel; rapamycin; staurosporine; steroid receptor; tacrolimus; unclassified drug; heat shock protein 90; immunophilin; amino acid sequence; antineoplastic activity; breast cancer; cancer inhibition; carcinogenesis; colorectal carcinoma; complex formation; drug effect; drug resistance; glioma; human; lymphoma; melanoma; neoplasm; nonhuman; pancreas cancer; priority journal; prostate cancer; protein protein interaction; Review; signal transduction; animal; metabolism; neoplasm; Animals; HSP90 Heat-Shock Proteins; Humans; Immunophilins; Neoplasms
Año:2016
Volumen:138
Número:4
Página de inicio:797
Página de fin:808
DOI: http://dx.doi.org/10.1002/ijc.29509
Título revista:International Journal of Cancer
Título revista abreviado:Int. J. Cancer
ISSN:00207136
CODEN:IJCNA
CAS:1 (3,3 dimethyl 1,2 dioxopentyl) 2 pyrrolidinecarboxylic acid 3 (3 pyridyl)propyl ester, 186452-09-5; bicalutamide, 90357-06-5; calcium, 7440-70-2, 14092-94-5; cisplatin, 15663-27-1, 26035-31-4, 96081-74-2; cycloheximide, 642-81-9, 66-81-9; etoposide, 33419-42-0; methotrexate, 15475-56-6, 59-05-2, 7413-34-5; paclitaxel, 33069-62-4; rapamycin, 53123-88-9; staurosporine, 62996-74-1; tacrolimus, 104987-11-3; HSP90 Heat-Shock Proteins; Immunophilins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00207136_v138_n4_p797_Mazaira

Referencias:

  • Schiene, C., Fischer, G., Enzymes that catalyse the restructuring of proteins (2000) Curr Opin Struct Biol, 10, pp. 40-45
  • Kang, C.B., Hong, Y., Dhe-Paganon, S., FKBP family proteins: Immunophilins with versatile biological functions (2008) Neurosignals, 16, pp. 318-325
  • Li, H., Rao, A., Hogan, P.G., Interaction of calcineurin with substrates and targeting proteins (2011) Trends Cell Biol, 21, pp. 91-103
  • Shimobayashi, M., Hall, M.N., Making new contacts: The mTOR network in metabolism and signalling crosstalk (2014) Nat Rev Mol Cell Biol, 15, pp. 155-162
  • Pratt, W.B., Toft, D.O., Steroid receptor interactions with heat shock protein and immunophilin chaperones (1997) Endocr Rev, 18, pp. 306-360
  • Breiman, A., Plant Hsp90 and its co-chaperones (2014) Curr Protein Pept Sci, 15, pp. 232-244
  • Kost, S.L., Smith, D.F., Sullivan, W.P., Binding of heat shock proteins to the avian progesterone receptor (1989) Mol Cell Biol, 9, pp. 3829-3838
  • Smith, D.F., Schowalter, D.B., Kost, S.L., Reconstitution of progesterone receptor with heat shock proteins (1990) Mol Endocrinol, 4, pp. 1704-1711
  • Baulieu, E.E., Binart, N., Cadepond, F., Are receptor-associated nuclear proteins associated with the earliest effects of steroid hormones? (1990) Symp Soc Exp Biol, 44, pp. 3-20
  • Pratt, W.B., Jolly, D.J., Pratt, D.V., A region in the steroid binding domain determines formation of the non-DNA-binding, 9 S glucocorticoid receptor complex (1988) J Biol Chem, 263, pp. 267-273
  • Renoir, J.M., Radanyi, C., Faber, L.E., The non-DNA-binding heterooligomeric form of mammalian steroid hormone receptors contains a hsp90-bound 59-kilodalton protein (1990) J Biol Chem, 265, pp. 10740-10745
  • Galigniana, M.D., Echeverria, P.C., Erlejman, A.G., Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore (2010) Nucleus, 1, pp. 299-308
  • Mazaira, G.I., Lagadari, M., Erlejman, A.G., The emerging role of TPR-domain immunophilins in the mechanism of action of steroid receptors (2014) Nucl Receptor Res, 1, p. 17
  • Galigniana, M.D., Erlejman, A.G., Monte, M., The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events (2010) Mol Cell Biol, 30, pp. 1285-1298
  • Wochnik, G.M., Ruegg, J., Abel, G.A., FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells (2005) J Biol Chem, 280, pp. 4609-4616
  • Pekki, A., Ylikomi, T., Syvala, H., Progesterone receptor does not form oligomeric (8S), non-DNA-binding complex in intact cell nuclei (1995) J Cell Biochem, 58, pp. 95-104
  • Tuohimaa, P., Pekki, A., Blauer, M., Nuclear progesterone receptor is mainly heat shock protein 90-free in vivo (1993) Proc Natl Acad Sci USA, 90, pp. 5848-5852
  • Renoir, J.M., Radanyi, C., Jung-Testas, I., The nonactivated progesterone receptor is a nuclear heterooligomer (1990) J Biol Chem, 265, pp. 14402-14406
  • Segnitz, B., Gehring, U., Subunit structure of the nonactivated human estrogen receptor (1995) Proc Natl Acad Sci USA, 92, pp. 2179-2183
  • Pratt, W.B., Galigniana, M.D., Harrell, J.M., Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement (2004) Cell Signal, 16, pp. 857-872
  • Elbi, C., Walker, D.A., Romero, G., Molecular chaperones function as steroid receptor nuclear mobility factors (2004) Proc Natl Acad Sci USA, 101, pp. 2876-2881
  • Milgrom, E., (1981) Activation of Steroid-receptor Complexesed, , New York: Academic Press
  • Dahmer, M.K., Housley, P.R., Pratt, W.B., Effects of molybdate and endogenous inhibitors on steroid-receptor inactivation, transformation, and translocation (1984) Annu Rev Physiol, 46, pp. 67-81
  • Gasc, J.M., Renoir, J.M., Faber, L.E., Nuclear localization of two steroid receptor-associated proteins, hsp90 and p59 (1990) Exp Cell Res, 186, pp. 362-367
  • Echeverria, P.C., Mazaira, G., Erlejman, A., Nuclear import of the glucocorticoid receptor-hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin beta (2009) Mol Cell Biol, 29, pp. 4788-4797
  • Grossmann, C., Ruhs, S., Langenbruch, L., Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling (2012) Chem Biol, 19, pp. 742-751
  • Presman, D.M., Ogara, M.F., Stortz, M., Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor (2014) PLoS Biol, 12, p. e1001813
  • Barent, R.L., Nair, S.C., Carr, D.C., Analysis of FKBP51/FKBP52 chimeras and mutants for Hsp90 binding and association with progesterone receptor complexes (1998) Mol Endocrinol, 12, pp. 342-354
  • Ratajczak, T., Carrello, A., Mark, P.J., The cyclophilin component of the unactivated estrogen receptor contains a tetratricopeptide repeat domain and shares identity with p59 (FKBP59) (1993) J Biol Chem, 268, pp. 13187-13192
  • Banerjee, A., Periyasamy, S., Wolf, I.M., Control of glucocorticoid and progesterone receptor subcellular localization by the ligand-binding domain is mediated by distinct interactions with tetratricopeptide repeat proteins (2008) Biochemistry, 47, pp. 10471-10480
  • Hinds, T.D., Jr., Sanchez, E.R., Protein phosphatase 5 (2008) Int J Biochem Cell Biol, 40, pp. 2358-2362
  • Robson, T.A., Lohrer, H., Bailie, J.R., Gene regulation by low-dose ionizing radiation in a normal human lung epithelial cell line (1997) Biochem Soc Trans, 25, pp. 335-342
  • Robson, T., Joiner, M.C., Wilson, G.D., A novel human stress response-related gene with a potential role in induced radioresistance (1999) Radiat Res, 152, pp. 451-461
  • McCalla, D.R., Allan, R.K., Effect of actinomycin D on euglena chloroplast formation (1964) Nature, 201, pp. 504-505
  • McKeen, H.D., McAlpine, K., Valentine, A., A novel FK506-like binding protein interacts with the glucocorticoid receptor and regulates steroid receptor signaling (2008) Endocrinology, 149, pp. 5724-5734
  • Taipale, M., Krykbaeva, I., Koeva, M., Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition (2012) Cell, 150, pp. 987-1001
  • Galigniana, M.D., Harrell, J.M., O'Hagen, H.M., Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus (2004) J Biol Chem, 279, pp. 22483-22489
  • Leo, C., Chen, J.D., The SRC family of nuclear receptor coactivators (2000) Gene, 245, pp. 1-11
  • Werbajh, S., Nojek, I., Lanz, R., RAC-3 is a NF-kappa B coactivator (2000) FEBS Lett, 485, pp. 195-199
  • Mussi, P., Yu, C., O'Malley, B.W., Stimulation of steroid receptor coactivator-3 (SRC-3) gene overexpression by a positive regulatory loop of E2F1 and SRC-3 (2006) Mol Endocrinol, 20, pp. 3105-3119
  • Yan, J., Yu, C.T., Ozen, M., Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway (2006) Cancer Res, 66, pp. 11039-11046
  • Arimura, A., Vn Peer, M., Schroder, A.J., The transcriptional co-activator p/CIP (NCoA-3) is up-regulated by STAT6 and serves as a positive regulator of transcriptional activation by STAT6 (2004) J Biol Chem, 279, pp. 31105-31112
  • Colo, G.P., Rubio, M.F., Nojek, I.M., The p160 nuclear receptor co-activator RAC3 exerts an anti-apoptotic role through a cytoplasmatic action (2008) Oncogene, 27, pp. 2430-2444
  • Erlejman, A.G., De Leo, S.A., Mazaira, G.I., Transcriptional activity is modulated by FK506-binding proteins FKBP51 and FKBP52: A role for peptidyl-prolyl isomerase activity (2014) J Biol Chem, 289, pp. 26263-26276
  • Regan, P.L., Jacobs, J., Wang, G., Hsp90 inhibition increases p53 expression and destabilizes MYCN and MYC in neuroblastoma (2011) Int J Oncol, 38, pp. 105-112
  • Whitesell, L., Lin, N.U., HSP90 as a platform for the assembly of more effective cancer chemotherapy (2012) Biochim Biophys Acta, 1823, pp. 756-766
  • Trepel, J., Mollapour, M., Giaccone, G., Targeting the dynamic HSP90 complex in cancer (2010) Nat Rev Cancer, 10, pp. 537-549
  • Denny, W.B., Prapapanich, V., Smith, D.F., Structure-function analysis of squirrel monkey FK506-binding protein 51, a potent inhibitor of glucocorticoid receptor activity (2005) Endocrinology, 146, pp. 3194-3201
  • Scammell, J.G., Denny, W.B., Valentine, D.L., Overexpression of the FK506-binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three new world primates (2001) Gen Comp Endocrinol, 124, pp. 152-165
  • Reynolds, P.D., Roveda, K.P., Tucker, J.A., Glucocorticoid-resistant B-lymphoblast cell line derived from the bolivian squirrel monkey (saimiri boliviensis boliviensis) (1998) Lab Anim Sci, 48, pp. 364-370
  • Hubler, T.R., Scammell, J.G., Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids (2004) Cell Stress Chaperones, 9, pp. 243-252
  • Pariante, C.M., Miller, A.H., Glucocorticoid receptors in major depression: Relevance to pathophysiology and treatment (2001) Biol Psychiatry, 49, pp. 391-404
  • Binder, E.B., The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders (2009) Psychoneuroendocrinology, 34, pp. S186-S195
  • Galigniana, N.M., Ballmer, L.T., Toneatto, J., Regulation of the glucocorticoid response to stress-related disorders by the Hsp90-binding immunophilin FKBP51 (2012) J Neurochem, 122, pp. 4-18
  • Gallo, L.I., Lagadari, M., Piwien-Pilipuk, G., The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress (2011) J Biol Chem, 286, pp. 30152-30160
  • Storer, C.L., Dickey, C.A., Galigniana, M.D., FKBP51 and FKBP52 in signaling and disease (2011) Trends Endocrinol Metab, 22, pp. 481-490
  • Kassi, E., Moutsatsou, P., Glucocorticoid receptor signaling and prostate cancer (2011) Cancer Lett, 302, pp. 1-10
  • Periyasamy, S., Hinds, T., Jr., Shemshedini, L., FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin a (2010) Oncogene, 29, pp. 1691-1701
  • Yong, W., Yang, Z., Periyasamy, S., Essential role for Co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology (2007) J Biol Chem, 282, pp. 5026-5036
  • Knudsen, K.E., Penning, T.M., Partners in crime: Deregulation of AR activity and androgen synthesis in prostate cancer (2010) Trends Endocrinol Metab, 21, pp. 315-324
  • Estebanez-Perpina, E., Moore, J.M., Mar, E., The molecular mechanisms of coactivator utilization in ligand-dependent transactivation by the androgen receptor (2005) J Biol Chem, 280, pp. 8060-8068
  • Sharifi, N., Minireview: Androgen metabolism in castration-resistant prostate cancer (2013) Mol Endocrinol, 27, pp. 708-714
  • Bonkhoff, H., Berges, R., From pathogenesis to prevention of castration resistant prostate cancer (2010) Prostate, 70, pp. 100-112
  • Linja, M.J., Savinainen, K.J., Saramaki, O.R., Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer (2001) Cancer Res, 61, pp. 3550-3555
  • Egan, A., Dong, Y., Zhang, H., Castration-resistant prostate cancer: Adaptive responses in the androgen axis (2014) Cancer Treat Rev, 40, pp. 426-433
  • Kaikkonen, S., Paakinaho, V., Sutinen, P., Prostaglandin 15d-PGJ(2) inhibits androgen receptor signaling in prostate cancer cells (2013) Mol Endocrinol, 27, pp. 212-223
  • Jiang, W., Cazacu, S., Xiang, C., FK506 binding protein mediates glioma cell growth and sensitivity to rapamycin treatment by regulating NF-kappaB signaling pathway (2008) Neoplasia, 10, pp. 235-243
  • Romano, S., D'Angelillo, A., Staibano, S., FK506-binding protein 51 is a possible novel tumoral marker (2010) Cell Death Dis, 1, p. e55
  • Giraudier, S., Chagraoui, H., Komura, E., Overexpression of FKBP51 in idiopathic myelofibrosis regulates the growth factor independence of megakaryocyte progenitors (2002) Blood, 100, pp. 2932-2940
  • Avellino, R., Romano, S., Parasole, R., Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells (2005) Blood, 106, pp. 1400-1406
  • Stechschulte, L.A., Sanchez, E.R., FKBP51-a selective modulator of glucocorticoid and androgen sensitivity (2011) Curr Opin Pharmacol, 11, pp. 332-337
  • Romano, S., Staibano, S., Greco, A., FK506 binding protein 51 positively regulates melanoma stemness and metastatic potential (2013) Cell Death Dis, 4, p. e578
  • Hou, J., Wang, L., FKBP5 as a selection biomarker for gemcitabine and akt inhibitors in treatment of pancreatic cancer (2012) PLoS One, 7, p. e36252
  • Solassol, J., Mange, A., Maudelonde, T., FKBP family proteins as promising new biomarkers for cancer (2011) Curr Opin Pharmacol, 11, pp. 320-325
  • Pei, H., Li, L., Fridley, B.L., FKBP51 affects cancer cell response to chemotherapy by negatively regulating akt (2009) Cancer Cell, 16, pp. 259-266
  • Ni, L., Yang, C.S., Gioeli, D., FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells (2010) Mol Cell Biol, 30, pp. 1243-1253
  • Romano, S., D'Angelillo, A., Pacelli, R., Role of FK506-binding protein 51 in the control of apoptosis of irradiated melanoma cells (2010) Cell Death Differ, 17, pp. 145-157
  • Mukaide, H., Adachi, Y., Taketani, S., FKBP51 expressed by both normal epithelial cells and adenocarcinoma of colon suppresses proliferation of colorectal adenocarcinoma (2008) Cancer Invest, 26, pp. 385-390
  • Callebaut, I., Renoir, J.M., Lebeau, M.C., An immunophilin that binds M(r) 90,000 heat shock protein: Main structural features of a mammalian p59 protein (1992) Proc Natl Acad Sci USA, 89, pp. 6270-6274
  • Wu, B., Li, P., Liu, Y., 3D structure of human FK506-binding protein 52: Implications for the assembly of the glucocorticoid receptor/Hsp90/immunophilin heterocomplex (2004) Proc Natl Acad Sci USA, 101, pp. 8348-8353
  • Pirkl, F., Buchner, J., Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40 (2001) J Mol Biol, 308, pp. 795-806
  • Sinars, C.R., Cheung-Flynn, J., Rimerman, R.A., Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes (2003) Proc Natl Acad Sci USA, 100, pp. 868-873
  • Riggs, D.L., Cox, M.B., Tardif, H.L., Noncatalytic role of the FKBP52 peptidyl-prolyl isomerase domain in the regulation of steroid hormone signaling (2007) Mol Cell Biol, 27, pp. 8658-8669
  • Ward, B.K., Mark, P.J., Ingram, D.M., Expression of the estrogen receptor-associated immunophilins, cyclophilin 40 and FKBP52, in breast cancer (1999) Breast Cancer Res Treat, 58, pp. 267-280
  • Shipp, C., Watson, K., Jones, G.L., Associations of HSP90 client proteins in human breast cancer (2011) Anticancer Res, 31, pp. 2095-2101
  • Chen, H., Yong, W., Hinds, T.D., Jr., Fkbp52 regulates androgen receptor transactivation activity and male urethra morphogenesis (2010) J Biol Chem, 285, pp. 27776-27784
  • Yang, Z., Wolf, I.M., Chen, H., FK506-binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor a isoform (2006) Mol Endocrinol, 20, pp. 2682-2694
  • Tranguch, S., Cheung-Flynn, J., Daikoku, T., Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation (2005) Proc Natl Acad Sci USA, 102, pp. 14326-14331
  • Cheung-Flynn, J., Prapapanich, V., Cox, M.B., Physiological role for the cochaperone FKBP52 in androgen receptor signaling (2005) Mol Endocrinol, 19, pp. 1654-1666
  • Estebanez-Perpina, E., Arnold, L.A., Nguyen, P., A surface on the androgen receptor that allosterically regulates coactivator binding (2007) Proc Natl Acad Sci USA, 104, pp. 16074-16079
  • Grosdidier, S., Fernandez-Recio, J., Protein-protein docking and hot-spot prediction for drug discovery (2012) Curr Pharm des, 18, pp. 4607-4618
  • Grosdidier, S., Carbo, L.R., Buzon, V., Allosteric conversation in the androgen receptor ligand-binding domain surfaces (2012) Mol Endocrinol, 26, pp. 1078-1090
  • De Leon, J.T., Iwai, A., Feau, C., Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells (2011) Proc Natl Acad Sci USA, 108, pp. 11878-11883
  • Ott, M., Litzenburger, U.M., Rauschenbach, K.J., Suppression of TDO-mediated tryptophan catabolism in glioblastoma cells by a steroid-responsive FKBP52-dependent pathway (2015) Glia, 63, pp. 78-90
  • Opitz, C.A., Litzenburger, U.M., Sahm, F., An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor (2011) Nature, 478, pp. 197-203
  • Pilotte, L., Larrieu, P., Stroobant, V., Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase (2012) Proc Natl Acad Sci USA, 109, pp. 2497-2502
  • Hoffmann, A., Natoli, G., Ghosh, G., Transcriptional regulation via the NF-kappaB signaling module (2006) Oncogene, 25, pp. 6706-6716
  • Gilmore, T.D., The rel/NF-kappaB signal transduction pathway: Introduction (1999) Oncogene, 18, pp. 6842-6844
  • Fan, Y., Gupta, N., Gelinas, C., (2006) Molecular Basis of Oncogenesis by NF-kB: From A Bird's Eye View to Relevant Role in Cancer, Ed, , Georgetown, Texas, USA: Landes Bioscience
  • Erlejman, A.G., De Leo, S.A., Mazaira, G.I., NF-kappaB transcriptional activity is modulated by FK506-binding proteins FKBP51 and FKBP52: A ROLE for PEPTIDYL-PROLYL ISOMERASE ACTIVITY (2014) J Biol Chem, 289, pp. 26263-26276
  • Hinz, M., Broemer, M., Arslan, S.C., Signal responsiveness of IkappaB kinases is determined by Cdc37-assisted transient interaction with Hsp90 (2007) J Biol Chem, 282, pp. 32311-32319
  • Galigniana, M.D., Radanyi, C., Renoir, J.M., Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus (2001) J Biol Chem, 276, pp. 14884-14889
  • Mikenberg, I., Widera, D., Kaus, A., Transcription factor NF-kappaB is transported to the nucleus via cytoplasmic dynein/dynactin motor complex in hippocampal neurons (2007) PLoS One, 2, p. e589
  • Mackenzie, G.G., Keen, C.L., Oteiza, P.I., Microtubules are required for NF-kappaB nuclear translocation in neuroblastoma IMR-32 cells: Modulation by zinc (2006) J Neurochem, 99, pp. 402-415
  • Riggs, D.L., Cox, M.B., Cheung-Flynn, J., Functional specificity of co-chaperone interactions with Hsp90 client proteins (2004) Crit Rev Biochem Mol Biol, 39, pp. 279-295
  • Scheinman, R.I., Gualberto, A., Jewell, C.M., Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors (1995) Mol Cell Biol, 15, pp. 943-953
  • Guo, G., Wang, T., Gao, Q., Expression of ErbB2 enhances radiation-induced NF-kappaB activation (2004) Oncogene, 23, pp. 535-545. , etal
  • Cao, N., Li, S., Wang, Z., NF-kappaB-mediated HER2 overexpression in radiation-adaptive resistance (2009) Radiat Res, 171, pp. 9-21
  • Shirane, M., Nakayama, K.I., Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis (2003) Nat Cell Biol, 5, pp. 28-37
  • Choi, B.H., Yoon, H.S., FKBP38-Bcl-2 interaction: A novel link to chemoresistance (2011) Curr Opin Pharmacol, 11, pp. 354-359
  • Kang, C.B., Feng, L., Chia, J., Molecular characterization of FK-506 binding protein 38 and its potential regulatory role on the anti-apoptotic protein Bcl-2 (2005) Biochem Biophys Res Commun, 337, pp. 30-38
  • Bai, X., Ma, D., Liu, A., Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38 (2007) Science, 318, pp. 977-980
  • Azmi, A.S., Wang, Z., Philip, P.A., Emerging Bcl-2 inhibitors for the treatment of cancer (2011) Expert Opin Emerg Drugs, 16, pp. 59-70
  • Blaskovich, M.A., Yendluri, V., Lawrence, H.R., Lysophosphatidic acid acyltransferase beta regulates mTOR signaling (2013) PLoS One, 8, p. e78632
  • Choi, M.S., Min, S.H., Jung, H., The essential role of FKBP38 in regulating phosphatase of regenerating liver 3 (PRL-3) protein stability (2011) Biochem Biophys Res Commun, 406, pp. 305-309
  • Nakagawa, T., Shirane, M., Iemura, S., Anchoring of the 26S proteasome to the organellar membrane by FKBP38 (2007) Genes Cells, 12, pp. 709-719
  • Choi, B.H., Feng, L., Yoon, H.S., FKBP38 protects Bcl-2 from caspase-dependent degradation (2010) J Biol Chem, 285, pp. 9770-9779
  • Sagawa, Y., Fujitoh, A., Nishi, H., Establishment of three cisplatin-resistant endometrial cancer cell lines using two methods of cisplatin exposure (2011) Tumour Biol, 32, pp. 399-408
  • Tabuchi, Y., Matsuoka, J., Gunduz, M., Resistance to paclitaxel therapy is related with Bcl-2 expression through an estrogen receptor mediated pathway in breast cancer (2009) Int J Oncol, 34, pp. 313-319
  • Hadjidaniel, M.D., Reynolds, C.P., Antagonism of cytotoxic chemotherapy in neuroblastoma cell lines by 13-cis-retinoic acid is mediated by the antiapoptotic Bcl-2 family proteins (2010) Mol Cancer Ther, 9, pp. 3164-3174
  • Robson, T., Price, M.E., Moore, M.L., Increased repair and cell survival in cells treated with DIR1 antisense oligonucleotides: Implications for induced radioresistance (2000) Int J Radiat Biol, 76, pp. 617-623
  • Jascur, T., Brickner, H., Salles-Passador, I., Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding TPR protein (2005) Mol Cell, 17, pp. 237-249
  • Bublik, D.R., Scolz, M., Triolo, G., Human GTSE-1 regulates p21(CIP1/WAF1) stability conferring resistance to paclitaxel treatment (2010) J Biol Chem, 285, pp. 5274-5281
  • Sunnotel, O., Hiripi, L., Lagan, K., Alterations in the steroid hormone receptor co-chaperone FKBPL are associated with male infertility: A case-control study (2010) Reprod Biol Endocrinol, 8, p. 22
  • McKeen, H.D., Byrne, C., Jithesh, P.V., FKBPL regulates estrogen receptor signaling and determines response to endocrine therapy (2010) Cancer Res, 70, pp. 1090-1100
  • Abukhdeir, A.M., Vitolo, M.I., Argani, P., Tamoxifen-stimulated growth of breast cancer due to p21 loss (2008) Proc Natl Acad Sci USA, 105, pp. 288-293
  • Valentine, A., O'Rourke, M., Yakkundi, A., FKBPL and peptide derivatives: Novel biological agents that inhibit angiogenesis by a CD44-dependent mechanism (2011) Clin Cancer Res, 17, pp. 1044-1056
  • Li, Y.Y., Liu, L.Q., Yang, J., [effect of WISp39 on proliferation, cell cycle and apoptosis of U937 cells] (2007) Zhongguo Shi Yan Xue Ye Xue Za Zhi, 15, pp. 733-737
  • Erlejman, A.G., Lagadari, M., Galigniana, M.D., Hsp90-binding immunophilins as a potential new platform for drug treatment (2013) Future Med Chem, 5, pp. 591-607
  • Liu, F., Wang, Y.Q., Meng, L., FK506-binding protein 12 ligands: A patent review (2013) Expert Opin Ther Pat, 23, pp. 1435-1449
  • Ashida, T., Kikuchi, T., Estimation of relative binding free energy based on a free energy variational principle for the FKBP-ligand system (2013) J Comput Aided Mol des, 27, pp. 479-490
  • Wang, Y., Kirschner, A., Fabian, A.K., Increasing the efficiency of ligands for FK506-binding protein 51 by conformational control (2013) J Med Chem, 56, pp. 3922-3935
  • Galat, A., Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands (2013) Cell Mol Life Sci, 70, pp. 3243-3275
  • Schmidt, M.V., Paez-Pereda, M., Holsboer, F., The prospect of FKBP51 as a drug target (2012) ChemMedChem, 7, pp. 1351-1359
  • Gaali, S., Kirschner, A., Cuboni, S., Selective inhibitors of the FK506-binding protein 51 by induced fit (2015) Nat Chem Biol, 11, pp. 33-37
  • Bouwmeester, T., Bauch, A., Ruffner, H., A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway (2004) Nat Cell Biol, 6, pp. 97-105
  • Giordano, A., Avellino, R., Ferraro, P., Rapamycin antagonizes NF-kappaB nuclear translocation activated by TNF-alpha in primary vascular smooth muscle cells and enhances apoptosis (2006) Am J Physiol Heart Circ Physiol, 290, pp. H2459-H2465
  • Edlich, F., Weiwad, M., Wildemann, D., The specific FKBP38 inhibitor N-(N',N'-dimethylcarboxamidomethyl)cycloheximide has potent neuroprotective and neurotrophic properties in brain ischemia (2006) J Biol Chem, 281, pp. 14961-14970
  • Robson, T., James, I.F., The therapeutic and diagnostic potential of FKBPL; A novel anticancer protein (2012) Drug Discov Today, 17, pp. 544-548
  • Immecke, S.N., Baal, N., Wilhelm, J., The cyclophilin-binding agent sanglifehrin a is a dendritic cell chemokine and migration inhibitor (2011) PLoS One, 6, p. e18406
  • Armand, P., Gannamaneni, S., Kim, H.T., Improved survival in lymphoma patients receiving sirolimus for graft-versus-host disease prophylaxis after allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning (2008) J Clin Oncol, 26, pp. 5767-5774
  • Pulsipher, M.A., Langholz, B., Wall, D.A., The addition of sirolimus to tacrolimus/methotrexate GVHD prophylaxis in children with ALL: A phase 3 children's oncology group/pediatric blood and marrow transplant consortium trial (2014) Blood, 123, pp. 2017-2025
  • Lupski, J.R., De Oca-Luna, R.M., Slaugenhaupt, S., DNA duplication associated with Charcot-Marie-tooth disease type 1A (1991) Cell, 66, pp. 219-232
  • Wang, T., Li, B.Y., Danielson, P.D., The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type i receptors (1996) Cell, 86, pp. 435-444
  • Cameron, A.M., Steiner, J.P., Roskams, A.J., Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux (1995) Cell, 83, pp. 463-472
  • Jayaraman, T., Brillantes, A.M., Timerman, A.P., FK506 binding protein associated with the calcium release channel (ryanodine receptor) (1992) J Biol Chem, 267, pp. 9474-9477
  • Gallo, L.I., Ghini, A.A., Piwien Pilipuk, G., Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity (2007) Biochemistry, 46, pp. 14044-14057
  • Cox, M.B., Smith, D.F., (2006) Functions of the Hsp90-Bindign FKBP Immunophilins, , Eurekah.com, Blatch G.L. ed. The Networking of Chaperones by Cochaperones:, Landes Bioscience, Austin, Texas, USA
  • Erlejman, A.G., Lagadari, M., Harris, D.C., Molecular chaperone activity and biological regulatory actions of the TPR-domain immunophilins FKBP51 and FKBP52 (2014) Curr Protein Pept Sci, 15, pp. 205-215
  • Quintá, H.R., Maschi, D., Gomez-Sanchez, C., Piwien-Pilipuk, G., Galigniana, M.D., Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth (2010) J Neurochem, 115, pp. 716-734
  • Sivils, J.C., Storer, C.L., Galigniana, M.D., Regulation of steroid hormone receptor function by the 52-kDa FK506-binding protein (FKBP52) (2011) Curr Opin Pharmacol, 11, pp. 314-319
  • Sanokawa-Akakura, R., Dai, H., Akakura, S., A novel role for the immunophilin FKBP52 in copper transport (2004) J Biol Chem, 279, pp. 27845-27848
  • Presman, D.M., Alvarez, L.D., Levi, V., Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids (2010) PLoS One, 5, p. e13279

Citas:

---------- APA ----------
Mazaira, G.I., Camisay, M.F., De Leo, S., Erlejman, A.G. & Galigniana, M.D. (2016) . Biological relevance of Hsp90-binding immunophilins in cancer development and treatment. International Journal of Cancer, 138(4), 797-808.
http://dx.doi.org/10.1002/ijc.29509
---------- CHICAGO ----------
Mazaira, G.I., Camisay, M.F., De Leo, S., Erlejman, A.G., Galigniana, M.D. "Biological relevance of Hsp90-binding immunophilins in cancer development and treatment" . International Journal of Cancer 138, no. 4 (2016) : 797-808.
http://dx.doi.org/10.1002/ijc.29509
---------- MLA ----------
Mazaira, G.I., Camisay, M.F., De Leo, S., Erlejman, A.G., Galigniana, M.D. "Biological relevance of Hsp90-binding immunophilins in cancer development and treatment" . International Journal of Cancer, vol. 138, no. 4, 2016, pp. 797-808.
http://dx.doi.org/10.1002/ijc.29509
---------- VANCOUVER ----------
Mazaira, G.I., Camisay, M.F., De Leo, S., Erlejman, A.G., Galigniana, M.D. Biological relevance of Hsp90-binding immunophilins in cancer development and treatment. Int. J. Cancer. 2016;138(4):797-808.
http://dx.doi.org/10.1002/ijc.29509