Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This work demonstrates that the acidity of nitroxyl (HNO) coordinated to a metal core is significantly influenced by its coordination environment. The possibility that NO- complexes may be the predominant species in physiological environments has implications in bioinorganic chemistry and biochemistry. This (apparently simple) result pushed us to delve into the basic aspects of HNO coordination chemistry. A series of three closely related {RuNO}6,7 complexes have been prepared and structurally characterized, namely [Ru(Me3[9]aneN3)(L2)(NO)]3+/2+, with L2 = 2,2′-bipyridine, 4,4′-dimethoxy-2,2′-bipyridine, and 2,2′-bipyrimidine. These species have also been thoroughly studied in solution, allowing for a systematic exploration of their electrochemical properties in a wide pH range, thus granting access and characterization of the elusive {RuNO}8 systems. Modulation of the electronic density in the {RuNO} fragment introduced by changing the bidentate coligand L2 produced only subtle structural modifications but affected dramatically other properties, most noticeably the redox potentials of the {RuNO}6,7 couples and the acidity of bound HNO, which spans over a range of almost three pH units. Controlling the acidity of coordinated HNO by the rational design of coordination compounds is of fundamental relevancy in the field of inorganic chemistry and also fuels the growing interest of the community in understanding the role that different HNO-derived species can play in biological systems. Copyright © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Remarkable Changes of the Acidity of Bound Nitroxyl (HNO) in the [Ru(Me3[9]aneN3)(L2)(NO)]n+ Family (n = 1-3). Systematic Structural and Chemical Exploration and Bioinorganic Chemistry Implications
Autor:Levin, N.; Codesido, N.O.; Marcolongo, J.P.; Alborés, P.; Weyhermüller, T.; Olabe, J.A.; Slep, L.D.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, INQUIMAE, Universidad de Buenos Aires, CONICET, Pabellón 2, 3er piso, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
Max-Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, Mülheim an der Ruhr, D-45470, Germany
Palabras clave:acid; coordination compound; nitrogen oxide; nitroxyl; ruthenium; chemistry; inorganic chemistry; molecular model; oxidation reduction reaction; pH; X ray crystallography; Acids; Chemistry, Bioinorganic; Coordination Complexes; Crystallography, X-Ray; Hydrogen-Ion Concentration; Models, Molecular; Nitrogen Oxides; Oxidation-Reduction; Ruthenium
Año:2018
Volumen:57
Número:19
Página de inicio:12270
Página de fin:12281
DOI: http://dx.doi.org/10.1021/acs.inorgchem.8b01958
Título revista:Inorganic Chemistry
Título revista abreviado:Inorg. Chem.
ISSN:00201669
CODEN:INOCA
CAS:nitrogen oxide, 11104-93-1; ruthenium, 7440-18-8; Acids; Coordination Complexes; Nitrogen Oxides; nitroxyl; Ruthenium
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00201669_v57_n19_p12270_Levin

Referencias:

  • Thomas, D.D., Ridnour, L.A., Isenberg, J.S., Flores-Santana, W., Switzer, C.H., Donzelli, S., Hussain, P., Wink, D.A., The chemical biology of nitric oxide: Implications in cellular signaling (2008) Free Radical Biol. Med., 45, pp. 18-31
  • Fukuto, J.M., Carrington, S.J., Tantillo, D.J., Harrison, J.G., Ignarro, L.J., Freeman, B.A., Chen, A., Wink, D.A., Small Molecule Signaling Agents: The Integrated Chemistry and Biochemistry of Nitrogen Oxides, Oxides of Carbon, Dioxygen, Hydrogen Sulfide, and Their Derived Species (2012) Chem. Res. Toxicol., 25, pp. 769-793
  • Ignarro, J.L.E., (2000) Nitric Oxide, Biology and Pathobiology, , Academic Press: San Diego, CA
  • Traylor, T.G., Sharma, V.S., Why nitric oxide? (1992) Biochemistry, 31, pp. 2847-2849
  • Lehnert, N., Berto, T.C., Galinato, M.G.I., Goodrich, L.E., The Role of Heme-Nitrosyls in the Biosynthesis, Transport, Sensing, and Detoxification of Nitric Oxide (NO) in Biological Systems: Enzymes and Model Complexes (2011) Handbook of Porphyrin Science, 14, pp. 1-247. , World Scientific Publishing Company, Vol
  • Goodrich, L.E., Lehnert, N., The trans effect of nitroxyl (HNO) in ferrous heme systems: Implications for soluble guanylate cyclase activation by HNO (2013) J. Inorg. Biochem., 118, pp. 179-186
  • Goodrich, L.E., Roy, S., Alp, E.E., Zhao, J., Hu, M.Y., Lehnert, N., Electronic Structure and Biologically Relevant Reactivity of Low-Spin {FeNO}8 Porphyrin Model Complexes: New Insight from a Bis-Picket Fence Porphyrin (2013) Inorg. Chem., 52, pp. 7766-7780
  • Levin, N., Perdoménico, J., Bill, E., Weyhermuller, T., Slep, L.D., Pushing the photodelivery of nitric oxide to the visible: Are {FeNO}7 complexes good candidates? (2017) Dalton Trans, 46, pp. 16058-16064
  • Bari, S.E., Olabe, J.A., Slep, L.D., Redox States of Metallonitrosyls in Aqueous Solution (2015) Adv. Inorg. Chem., 67, pp. 87-144
  • Gratzel, M., Taniguchi, S., Henglein, A., Pulse radiolytic investigation of short-lived intermediates of the NO-reduction in aqueous solution (1970) Ber. Bunsen-Ges. Phys. Chem., 74, pp. 1003-1010
  • Shafirovich, V., Lymar, S.V., Nitroxyl and its anion in aqueous solutions: Spin states, protic equilibria, and reactivities toward oxygen and nitric oxide (2002) Proc. Natl. Acad. Sci. U. S. A., 99, p. 7340
  • Venancio, M.F., Doctorovich, F., Rocha, W.R., Solvation and Proton-Coupled Electron Transfer Reduction Potential of 2NO• to 1HNO in Aqueous Solution: A Theoretical Investigation (2017) J. Phys. Chem. B, 121, pp. 6618-6625
  • Fukuto, J.M., Cisneros, C.J., Kinkade, R.L., A comparison of the chemistry associated with the biological signaling and actions of nitroxyl (HNO) and nitric oxide (NO) (2013) J. Inorg. Biochem., 118, pp. 201-208
  • Fukuto, J.M., Recent History of HNO (Nitroxyl) Chemistry, Pharmacology and Therapeutic Potential (2018) Br. J. Pharmacol.
  • Paolocci, N., Jackson, M.I., Lopez, B.E., Miranda, K., Tocchetti, C.G., Wink, D.A., Hobbs, A.J., Fukuto, J.M., The pharmacology of nitroxyl (HNO) and its therapeutic potential: Not just the janus face of NO (2007) Pharmacol. Ther., 113, pp. 442-458
  • Doctorovich, F., Farmer, P.J., Martí, M.A., (2016) The Chemistry and Biology of Nitroxyl (HNO), , 1st ed. Elsevier
  • Basudhar, D., Bharadwaj, G., Salmon, D.J., Miranda, K.M., Doctorovich, F., Farmer, P.J., Martí, M.A., HNO Donors: Angeli's Salt and Related Diazeniumdiolates (2016) The Chemistry and Biology of Nitroxyl (HNO), pp. 11-36. , In, 1st ed. Elsevier
  • Hamer, M., Morales Vázquez, M.A., Doctorovich, F., Doctorovich, F., Farmer, P.J., Martí, M.A., HNO: Redox Chemistry and Interactions with Small Inorganic Molecules (2016) The Chemistry and Biology of Nitroxyl (HNO), pp. 1-9. , In, 1st ed. Elsevier
  • Bringas, M., Semelak, J., Zeida, A., Estrin, D.A., Theoretical investigation of the mechanism of nitroxyl decomposition in aqueous solution (2016) J. Inorg. Biochem., 162, pp. 102-108
  • Fukuto, J.M., Hobbs, A.J., Ignarro, J.L.E., N,O-Diacylated-N-hydroxyarylsulfonamides: Nitroxyl precursors with potent smooth muscle relaxant properties (1993) Biochem. Biophys. Res. Commun., 196, pp. 707-713
  • Doctorovich, F., Bikiel, D.E., Pellegrino, J., Suárez, S.A., Martí, M.A., Azanone (HNO) interaction with Hemeproteins and metalloporphyrins (2012) Adv. Inorg. Chem., 64, pp. 97-139
  • Olabe, J.A., Bari, S.E., Slep, L.D., Doctorovich, F., Farmer, P.J., Martí, M.A., Non-Heme Transition Metal Complexes of HNO (2016) The Chemistry and Biology of Nitroxyl (HNO), pp. 127-153. , In, 1st ed. Elsevier
  • Kumar, M.R., Farmer, P.J., Doctorovich, F., Farmer, P.J., Martí, M.A., Spectroscopic NMR Characterizations of HNO Adducts of Ferrous Heme Proteins (2016) The Chemistry and Biology of Nitroxyl (HNO), pp. 269-285. , In, 1st ed. Elsevier
  • Roncaroli, F., Videla, M., Slep, L.D., Olabe, J.A., New features in the redox coordination chemistry of metal nitrosyls {M-NO+ M-NO• M-NO- (HNO)} (2007) Coord. Chem. Rev., 251, pp. 1903-1930
  • Pellegrino, J., Bari, S.E., Bikiel, D.E., Doctorovich, F., Successful Stabilization of the Elusive Species {FeNO}8 in a Heme Model (2010) J. Am. Chem. Soc., 132, pp. 989-995
  • Codesido, N.O., Weyhermüller, T., Olabe, J.A., Slep, L.D., Nitrosyl-Centered Redox and Acid-Base Interconversions in [Ru(Me3[9]aneN3)(bpy)(NO)]3,2,1+. the p Ka of HNO for its Nitroxyl Derivative in Aqueous Solution (2014) Inorg. Chem., 53, pp. 981-997
  • Enemark, J.H., Feltham, R.D., Principles of Structure, Bonding, and Reactivity for Metal Nitrosyl Complexes (1974) Coord. Chem. Rev., 13, pp. 339-406
  • Feltham, R.D., Enemark, J.H., Structures of Metal Nitrosyls (2007) Top. Stereochem., 12, pp. 155-215
  • Levin, N., Codesido, N.O., Bill, E., Weyhermuller, T., Segantin Gaspari, A.P., Da Silva, R.S., Olabe, J.A., Slep, L.D., Structural, Spectroscopic, and Photochemical Investigation of an Octahedral NO-Releasing {RuNO}7 Species (2016) Inorg. Chem., 55, pp. 7808-7810
  • Armarego, W.L.F., Perrin, D.D., (1996) Purification of Laboratory Chemicals, , Reed Educational & Professional Publishing Ltd
  • Cheng, W.C., Yu, W.Y., Cheung, K.K., Che, C.M., Syntheses of Novel Monomeric 1,4,7-Trimethyl-1,4,7- Triazacyclononane Ruthenium Complexes - Reactivities and Structure of Sterically Encumbered Cationic Monoaquaruthenium(Ii) and Monooxoruthenium(Iv) Complexes (1994) J. Chem. Soc., Dalton Trans., pp. 57-62
  • Vera, D.B., Osa Codesido, N., De Candia, A.G., Alborés, P., Slep, L.D., Chlorido(4,4'-dimethoxy-2,2'-bipyridine)(1,4,7-trimethyl-1,4,7-triazacyclononane)ruthenium(II) perchlorate acetonitrile disolvate and aqua(4,4'-dimethoxy-2,2'-bipyridine)(1,4,7-trimethyl-1,4,7-triazacyclononane)ruthenium(II) bis(perchlorate) dihydrate (2012) Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 68, pp. m127-130
  • Osa Codesido, N., De Candia, A.G., Weyhermuller, T., Olabe, J.A., Slep, L.D., An Electron-Rich {RuNO}6 Complex: Trans-[Ru(DMAP)4(NO)(OH)]2+ - Structure and Reactivity (2012) Eur. J. Inorg. Chem., 2012, pp. 4301-4309
  • Stoll, S., Schweiger, A., EasySpin, a comprehensive software package for spectral simulation and analysis in EPR (2006) J. Magn. Reson., 178, pp. 42-55
  • Gampp, H., Maeder, M., Meyer, C.J., Zuberbühler, A.D., Quantification of a Known Component in an Unkown Mixture (1987) Anal. Chim. Acta, 193, pp. 287-293
  • Gampp, H., Maeder, M., Meyer, C.J., Zuberbühler, A.D., Calculation of equilibrium constants from multiwavelength spectroscopic data - III Model-free analysis of spectrophotometric and ESR titrations (1985) Talanta, 32, pp. 1133-1139
  • Gampp, H., Maeder, M., Meyer, C.J., Zuberbühler, A.D., Calculation of equilibrium constants from multiwavelength spectroscopic data - II SPECFIT: Two user friendly programs in BASIC ans standard FORTRAN 77 (1985) Talanta, 32, pp. 257-264
  • Gampp, H., Maeder, M., Meyer, C.J., Zuberbühler, A.D., Calculation of equilibrium constants from multiwavelength spectroscopic data - I Mathematical considerations (1985) Talanta, 32, pp. 95-101
  • Malinovsky, E.R., (1991) Factor Analysis in Chemistry, , 2nd ed. Wiley-Interscience: New York
  • Slep, L.D., Mijovilovich, A., Meyer-Klaucke, W., Weyhermuller, T., Bill, E., Bothe, E., Neese, F., Wieghardt, K., Mixed-valent {FeIV(μ-O)(μ-carboxylato)2FeIII}3+ core (2003) J. Am. Chem. Soc., 125, pp. 15554-15570
  • De Candia, A.G., Marcolongo, J.P., Slep, L.D., A new ruthenium nitrosyl species based on a pendant-arm 1,4,8,11-tetraazacyclotetradecane (cyclam) derivative: An experimental and theoretical study (2007) Polyhedron, 26, pp. 4719-4730
  • De Candia, A.G., Singh, P., Kaim, W., Slep, L.D., All- trans-[CIRuII(py)4(NC)RuII(py)4(CN)RuII(py)4(NO)](PF6)4: A Redox-Active 2-Donor/1-Acceptor System Based on the Electrophilic {RuNO}6 Motif (2009) Inorg. Chem., 48, pp. 565-573
  • Roncaroli, F., Baraldo, L.M., Slep, L.D., Olabe, J.A., Metallonitrosyl fragment as electron acceptor: Intramolecular charge transfer, long range electronic coupling, and electrophilic reactivity in the trans-[NCRu(py)4(CN)Ru(py)4NO]3+ ion (2002) Inorg. Chem., 41, pp. 1930-1939
  • Videla, M., Jacinto, J.S., Baggio, R., Garland, M.T., Singh, P., Kaim, W., Slep, L.D., Olabe, J.A., New Ruthenium Nitrosyl Complexes with Tris(1-pyrazolyl)methane (tpm) and 2,2'-Bipyridine (bpy) Coligands. Structure, Spectroscopy, and Electrophilic and Nucleophilic Reactivities of Bound Nitrosyl (2006) Inorg. Chem., 45, pp. 8608-8617
  • (2006) SCALE3 ABSPACK Empirical Absorption Correction, CrysAlis, , Oxford Diffraction Ltd
  • Altomare, A., Burla, M.C., Camalli, M., Cascarano, G.L., Giacovazzo, C., Guagliardi, A., Moliterni, A.G.G., Spagna, R., SIR97: A new tool for crystal structure determination and refinement (1999) J. Appl. Crystallogr., 32, pp. 115-119
  • Sheldrick, G.M., A short history of SHELX (2008) Acta Crystallogr., Sect. A: Found. Crystallogr., 64, pp. 112-122
  • Farrugia, L., WinGX and ORTEP for Windows: An update (2012) J. Appl. Crystallogr., 45, pp. 849-854
  • (2007) SADABS 2006/1, , Bruker AXS Inc. Madison, WI
  • (2003) ShelXTL 6.14, , Bruker AXS Inc. Madison, WI
  • Sheldrick, G.M., (1997) ShelXL97, , Universität Göttingen: Göttingen, Germany
  • Frisch, M.J., (2009) Gaussian 09, , revision A.02; Gaussian Inc. Wallingford, CT
  • Becke, A.D., Density functional calculations of molecular bond energies (1986) J. Chem. Phys., 84, pp. 4524-4529
  • Becke, A.D., Density-functional thermochemistry. III. the role of exact exchange (1993) J. Chem. Phys., 98, pp. 5648-5652
  • Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1988) Phys. Rev. B: Condens. Matter Mater. Phys., 37, pp. 785-789
  • Perdew, J.P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas (1986) Phys. Rev. B: Condens. Matter Mater. Phys., 33, pp. 8822-8824
  • Dunning, T.H., Jr., Hay, P.J., Modern Theoretical Chemistry (1976) Modern Theoretical Chemistry, pp. 1-28. , Plenum: New York
  • Hay, P.J., Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg (1985) J. Chem. Phys., 82, pp. 270-283
  • Hay, P.J., Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals (1985) J. Chem. Phys., 82, pp. 299-310
  • Wadt, W.R., Hay, P.J., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi (1985) J. Chem. Phys., 82, pp. 284-298
  • Olabe, J.A., Slep, L.D., McCleverty, J.A., Meyer, T.J., Reactivity and Structure of Complexes of Small Molecules: Nitric and Nitrous Oxide (2004) Comprehensive Coordination Chemistry II, from Biology to Nanotechnology, 1, pp. 603-623. , Elsevier: Oxford, U.K. Vol
  • Serres, R.G., Grapperhaus, C.A., Bothe, E., Bill, E., Weyhermuller, T., Neese, F., Wieghardt, K., Structural, spectroscopic, and computational study of an octahedral, non-heme {Fe-NO}6-8 series: [Fe(NO)(cyclam-ac)]2+/+/O (2004) J. Am. Chem. Soc., 126, pp. 5138-5153
  • Sellmann, D., Blum, N., Heinemann, F.W., Hess, B.A., Synthesis, reactivity, and structure of strictly homologous 18 and 19 valence electron iron nitrosyl complexes (2001) Chem. - Eur. J., 7, pp. 1874-1880
  • Sellmann, D., Gottschalk-Gaudig, T., Haussinger, D., Heinemann, F.W., Hess, B.A., [Ru(HNO)('py(bu)S4')], the first HNO complex resulting from hydride addition to a NO complex ('py(bu)S4'2- = 2,6-bis(2- mercapto-3,5-di- tert-butylphenylthio)dimethylpyridine(2-)) (2001) Chem. - Eur. J., 7, pp. 2099-2103
  • Patra, A.K., Afshar, R., Olmstead, M.M., Mascharak, P.K., The First Non-Heme Iron(III) Complex with a Ligated Carboxamido Group That Exhibits Photolability of a Bound NO Ligand (2002) Angew. Chem., Int. Ed., 41, pp. 2512-2515
  • Patra, A.K., Rowland, J.M., Marlin, D., Bill, E., Olmstead, M.M., Mascharak, P.K., Iron nitrosyls of a pentadentate ligand containing a single carboxamide group: Syntheses, structures, electronic properties, and photolability of NO (2003) Inorg. Chem., 42, pp. 6812-6823
  • McQuilken, A.C., Ha, Y., Sutherlin, K.D., Siegler, M.A., Hodgson, K.O., Hedman, B., Solomon, E.I., Goldberg, D.P., Preparation of non-heme {FeNO}7 models of cysteine dioxygenase: Sulfur versus nitrogen ligation and photorelease of nitric oxide (2013) J. Am. Chem. Soc., 135, pp. 14024-14027
  • Wanner, M., Scheiring, T., Kaim, W., Slep, L.D., Baraldo, L.M., Olabe, J.A., Zalis, S., Baerends, E.J., EPR characteristics of the [(NC)5M(NO)]3- ions (M = Fe, Ru, Os). Experimental and DFT study establishing NO center dot as a ligand (2001) Inorg. Chem., 40, pp. 5704-5707
  • Frantz, S., Sarkar, B., Sieger, M., Kaim, W., Roncaroli, F., Olabe, J.A., Zalis, S., EPR insensitivity of the metal-nitrosyl spin-bearing moiety in complexes [LnRuII-NO•]k (2004) Eur. J. Inorg. Chem., 2004, pp. 2902-2907
  • Hunt, P., Lehnert, N., Heme-Nitrosyls: Electronic Structure Implications for Function in Biology (2015) Acc. Chem. Res., 48, pp. 2117-2125
  • King, H.F., Stanton, R.E., Kim, H., Wyatt, R.E., Parr, R.G., Corresponding Orbitals and Nonorthogonality Problem in Molecular Quantum Mechanics (1967) J. Chem. Phys., 47, pp. 1936-1941
  • Van Stappen, C., Goodrich, L.E., Lehnert, N., Doctorovich, F., Farmer, P.J., Martí, M.A., The Interaction of HNO with Transition Metal Centers and Its Biological Significance. Insight into Electronic Structure from Theoretical Calculations (2016) The Chemistry and Biology of Nitroxyl (HNO), pp. 155-192. , In, 1st ed. Elsevier
  • Roncaroli, F., Ruggiero, M.E., Franco, D.W., Estiu, G.L., Olabe, J.A., Kinetic, mechanistic, and DFT study of the electrophilic reactions of nitrosyl complexes with hydroxide (2002) Inorg. Chem., 41, pp. 5760-5769
  • Sulc, F., Immoos, C.E., Pervitsky, D., Farmer, P.J., Efficient Trapping of HNO by Deoxymyoglobin (2004) J. Am. Chem. Soc., 126, pp. 1096-1101
  • Montenegro, A.C., Amorebieta, V.T., Slep, L.D., Martin, D.F., Roncaroli, F., Murgida, D.H., Bari, S.E., Olabe, J.A., Three Redox States of Nitrosyl: NO+, NO•, and NO-/HNO Interconvert Reversibly on the Same Pentacyanoferrate(II) Platform (2009) Angew. Chem., Int. Ed., 48, pp. 4213-4216
  • Montenegro, A.C., Bari, S.E., Olabe, J.A., Reactivity of iron(II)-bound nitrosyl hydride (HNO, nitroxyl) in aqueous solution (2013) J. Inorg. Biochem., 118, pp. 108-114
  • Gao, Y., Toubaei, A., Kong, X., Wu, G., Acidity and Hydrogen Exchange Dynamics of Iron(II)-Bound Nitroxyl in Aqueous Solution (2014) Angew. Chem., Int. Ed., 53, pp. 11547-11551
  • Guo, Y., Suess, D.L.M., Herzik, M.A., Jr., Iavarone, A.T., Britt, R.D., Marletta, M.A., Regulation of nitric oxide signaling by formation of a distal receptor-ligand complex (2017) Nat. Chem. Biol., 13, p. 1216

Citas:

---------- APA ----------
Levin, N., Codesido, N.O., Marcolongo, J.P., Alborés, P., Weyhermüller, T., Olabe, J.A. & Slep, L.D. (2018) . Remarkable Changes of the Acidity of Bound Nitroxyl (HNO) in the [Ru(Me3[9]aneN3)(L2)(NO)]n+ Family (n = 1-3). Systematic Structural and Chemical Exploration and Bioinorganic Chemistry Implications. Inorganic Chemistry, 57(19), 12270-12281.
http://dx.doi.org/10.1021/acs.inorgchem.8b01958
---------- CHICAGO ----------
Levin, N., Codesido, N.O., Marcolongo, J.P., Alborés, P., Weyhermüller, T., Olabe, J.A., et al. "Remarkable Changes of the Acidity of Bound Nitroxyl (HNO) in the [Ru(Me3[9]aneN3)(L2)(NO)]n+ Family (n = 1-3). Systematic Structural and Chemical Exploration and Bioinorganic Chemistry Implications" . Inorganic Chemistry 57, no. 19 (2018) : 12270-12281.
http://dx.doi.org/10.1021/acs.inorgchem.8b01958
---------- MLA ----------
Levin, N., Codesido, N.O., Marcolongo, J.P., Alborés, P., Weyhermüller, T., Olabe, J.A., et al. "Remarkable Changes of the Acidity of Bound Nitroxyl (HNO) in the [Ru(Me3[9]aneN3)(L2)(NO)]n+ Family (n = 1-3). Systematic Structural and Chemical Exploration and Bioinorganic Chemistry Implications" . Inorganic Chemistry, vol. 57, no. 19, 2018, pp. 12270-12281.
http://dx.doi.org/10.1021/acs.inorgchem.8b01958
---------- VANCOUVER ----------
Levin, N., Codesido, N.O., Marcolongo, J.P., Alborés, P., Weyhermüller, T., Olabe, J.A., et al. Remarkable Changes of the Acidity of Bound Nitroxyl (HNO) in the [Ru(Me3[9]aneN3)(L2)(NO)]n+ Family (n = 1-3). Systematic Structural and Chemical Exploration and Bioinorganic Chemistry Implications. Inorg. Chem. 2018;57(19):12270-12281.
http://dx.doi.org/10.1021/acs.inorgchem.8b01958