Artículo

Alcoba, D.R.; Oña, O.B.; Massaccesi, G.E.; Torre, A.; Lain, L.; Melo, J.I.; Peralta, J.E.; Oliva-Enrich, J.M. "Magnetic Properties of Mononuclear Co(II) Complexes with Carborane Ligands" (2018) Inorganic Chemistry. 57(13):7763-7769
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We analyze the magnetic properties of three mononuclear Co(II) coordination complexes using quantum chemical complete active space self-consistent field and N-electron valence perturbation theory approaches. The complexes are characterized by a distorted tetrahedral geometry in which the central ion is doubly chelated by the icosahedral ligands derived from 1,2-(HS)2-1,2-C2B10H10 (complex I), from 1,2-(HS)2-1,2-C2B10H10 and 9,12-(HS)2-1,2-C2B10H10 (complex II), and from 9,12-(HS)2-1,2-C2B10H10 (complex III), which are two positional isomers of dithiolated 1,2-dicarba-closo-dodecaborane (complex I). Complex I was realized experimentally recently (Tu, D.; Shao, D.; Yan, H.; Lu, C. Chem. Commun. 2016, 52, 14326) and served to validate the computational protocol employed in this work, while the remaining two proposed complexes can be considered positional isomers of I. Our calculations show that these complexes present different axial and rhombic zero-field splitting anisotropy parameters and different values of the most significant components of the g tensor. The predicted axial anisotropy D = -147.2 cm-1 for complex II is twice that observed experimentally for complex I, D = 72.8 cm-1, suggesting that this complex may be of interest for practical applications. We also analyze the temperature dependence of the magnetic susceptibility and molar magnetization for these complexes when subject to an external magnetic field. Overall, our results suggest that o-carborane-incorporated Co(II) complexes are worthwhile candidates for experimental exploration as single-ion molecular magnets. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Magnetic Properties of Mononuclear Co(II) Complexes with Carborane Ligands
Autor:Alcoba, D.R.; Oña, O.B.; Massaccesi, G.E.; Torre, A.; Lain, L.; Melo, J.I.; Peralta, J.E.; Oliva-Enrich, J.M.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria 1428, Buenos Aires, Argentina
Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria 1428, Buenos Aires, Argentina
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de la Plata, CCT la Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (s/n), Sucursal 4, CC 16, La Plata, 1900, Argentina
Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria 1428, Buenos Aires, Argentina
Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad Del País Vasco, Apartado 644, Bilbao, E-48080, Spain
Department of Physics, Central Michigan University, Mount Pleasant, MI 48859, United States
Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, 28006, Spain
Año:2018
Volumen:57
Número:13
Página de inicio:7763
Página de fin:7769
DOI: http://dx.doi.org/10.1021/acs.inorgchem.8b00815
Título revista:Inorganic Chemistry
Título revista abreviado:Inorg. Chem.
ISSN:00201669
CODEN:INOCA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00201669_v57_n13_p7763_Alcoba

Referencias:

  • Kahn, O., (1993) Molecular Magnetism, , 1 st ed. VCH Publishers, Inc. New York
  • Wernsdorfer, W., Sessoli, R., Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters (1999) Science, 284, pp. 133-135
  • Christou, G., Gatteschi, D., Hendrickson, D.N., Sessoli, R., Single-Molecule Magnets (2000) MRS Bull., 25, pp. 66-71
  • Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S., Kaizu, Y., Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level (2003) J. Am. Chem. Soc., 125, pp. 8694-8695
  • Miller, J.S., Magnetically Ordered Molecule-based Materials (2011) Chem. Soc. Rev., 40, pp. 3266-3296
  • Sugawara, T., Matsushita, M.M., Spintronics in Organic π-electronic Systems (2009) J. Mater. Chem., 19, pp. 1738-1753
  • Ratera, I., Veciana, J., Playing with Organic Radicals as Building Blocks for Functional Molecular Materials (2012) Chem. Soc. Rev., 41, pp. 303-349
  • Ganzhorn, M., Wernsdorfer, W., Bartolome, J., Luis, F., Fernandez, J., (2014) Molecular Magnets, , Springer: Berlin
  • Atanasov, M., Aravena, D., Suturina, E., Bill, E., Maganas, D., Neese, F., First Principles Approach to the Electronic Structure, Magnetic Anisotropy and Spin Relaxation in Mononuclear 3d-transition Metal Single Molecule Magnets (2015) Coord. Chem. Rev., 289-290, pp. 177-214
  • Postnikov, A.V., Kortus, J., Pederson, M.R., Density functional studies of molecular magnets (2006) Phys. Status Solidi B, 243, pp. 2533-2572
  • Sessoli, R., Gatteschi, D., Caneschi, A., Novak, M.A., Magnetic Bistability in a Metal-ion Cluster (1993) Nature, 365, pp. 141-143
  • Gatteschi, D., Sessoli, R., Villain, J., (2006) Molecular Nanomagnets, , Oxford University Press: New York
  • Meng, Y.-S., Jiang, S.-D., Wang, B.-W., Gao, S., Understanding the Magnetic Anisotropy toward Single-Ion Magnets (2016) Acc. Chem. Res., 49, pp. 2381-2389
  • Gomez-Coca, S., Cremades, E., Aliaga-Alcalde, N., Ruiz, E., Mononuclear Single-Molecule Magnets: Tailoring the Magnetic Anisotropy of First-Row Transition-Metal Complexes (2013) J. Am. Chem. Soc., 135, pp. 7010-7018
  • Baruah, T., Pederson, M.R., Electronic structure and magnetic anisotropy of the [Co4(hmp)4(CH3OH)4Cl4] molecule (2002) Chem. Phys. Lett., 360, pp. 144-148
  • Maganas, D., Sottini, S., Kyritsis, P., Groenen, E.J.J., Neese, F., Theoretical Analysis of the Spin Hamiltonian Parameters in Co(II)S4 Complexes, Using Density Functional Theory and Correlated ab initio Methods (2011) Inorg. Chem., 50, pp. 8741-8754
  • Fataftah, M.S., Zadrozny, J.M., Rogers, D.M., Freedman, D.E., A Mononuclear Transition Metal Single-Molecule Magnet in a Nuclear Spin-Free Ligand Environment (2014) Inorg. Chem., 53, pp. 10716-10721
  • King, B.T., Noll, B.C., McKinley, A.J., Michl, J., Dodecamethylcarba-closo-dodecaboranyl (CB11Me12), a Stable Free Radical (1996) J. Am. Chem. Soc., 118, pp. 10902-10903
  • Grimes, R.N., (2016) Carboranes, , 3 rd ed. Academic Press: New York
  • Hnyk, D., McKee, M., (2015) Boron: The Fifth Element, in Challenges and Advances in Computational Chemistry and Physics 20, , Springer: Dordrecht
  • Oliva, J.M., Alcoba, D.R., Lain, L., Torre, A., Electronic Structure Studies of Diradicals Derived from Closo-Carboranes (2013) Theor. Chem. Acc., 132, p. 1329
  • Oliva, J.M., Alcoba, D.R., Oña, O.B., Torre, A., Lain, L., Michl, J., Toward (Car)Borane-based Molecular Magnets (2015) Theor. Chem. Acc., 134, p. 9
  • Alcoba, D.R., Oña, O.B., Massaccesi, G.E., Torre, A., Lain, L., Notario, R., Oliva, J.M., Molecular Magnetism in Closo-azadodecaborane Supericosahedrons (2016) Mol. Phys., 114, pp. 400-406
  • Oña, O.B., Alcoba, D.R., Torre, A., Lain, L., Massaccesi, G.E., Oliva-Enrich, J.M., Determination of Exchange Coupling Constants in Linear Polyradicals by means of Local Spins (2017) Theor. Chem. Acc., 136, p. 35
  • Tu, D., Shao, D., Yan, H., Lu, C., A Carborane-Incorporated Mononuclear Co(ii) Complex Showing Zero-Field Slow Magnetic Relaxation (2016) Chem. Commun., 52, pp. 14326-14329
  • Novikov, V.V., Pavlov, A.A., Nelyubina, Y.V., Boulon, M.-E., Varzatskii, O.A., Voloshin, Y.Z., Winpenny, R.E.P., A Trigonal Prismatic Mononuclear Cobalt(II) Complex Showing Single-Molecule Magnet Behavior (2015) J. Am. Chem. Soc., 137, pp. 9792-9795
  • Becke, A.D., Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior (1988) Phys. Rev. A: At., Mol., Opt. Phys., 38, pp. 3098-3100
  • Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields (1994) J. Phys. Chem., 98, p. 11623
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, p. 3865
  • Perdew, J.P., Burke, K., Ernzerhof, M., Errata: Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] (1997) Phys. Rev. Lett., 78, p. 1396
  • Perdew, J.P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas (1986) Phys. Rev. B: Condens. Matter Mater. Phys., 33, pp. 8822-8824
  • Perdew, J.P., Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas (1986) Phys. Rev. B: Condens. Matter Mater. Phys., 34, p. 7406
  • Schäfer, A., Horn, H., Ahlrichs, R., Fully optimized contracted Gaussian basis sets for atoms Li to Kr (1992) J. Chem. Phys., 97, pp. 2571-2577
  • Weigend, F., Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305
  • Dyall, K.G., Faegri, K., (2007) Introduction to Relativistic Quantum Chemistry, , Oxford University Press: Oxford
  • Neese, F., The ORCA program system (2012) Wiley Interdisciplinary Reviews: Comput. Mol. Sci., 2, pp. 73-78
  • Koch, W., Holthausen, M.C.A., (2001) A Chemist's Guide to Density Functional Theory, , 2 nd ed. Wiley-VCH: Weinheim
  • Vaidya, S., Tewary, S., Singh, S.K., Langley, S.K., Murray, K.S., Lan, Y., Wernsdorfer, W., Shanmugam, M., What Controls the Sign and Magnitude of Magnetic Anisotropy in Tetrahedral Cobalt(II) Single-Ion Magnets? (2016) Inorg. Chem., 55, pp. 9564-9578
  • Chibotaru, L.F., Ungur, L., Ab initio Calculation of Anisotropic Magnetic Properties of Complexes. I. Unique Definition of Pseudospin Hamiltonians and their Derivation (2012) J. Chem. Phys., 137, p. 064112
  • Neese, F., Quantum Chemistry and EPR Parameters (2017) EMagRes., 6, pp. 1-22
  • Rechkemmer, Y., Breitgoff, F.D., Van Der Meer, M., Atanasov, M., Hakl, M., Orlita, M., Neugebauer, P., Van Slageren, J., A Four-Coordinate Cobalt(II) Single-ion Magnet with Coercivity and a Very High Energy Barrier (2016) Nat. Commun., 7, p. 10467
  • Todd, M.J., Yildirim, E.A., On Khachiyan's Algorithm for the Computation of Minimum-volume Enclosing Ellipsoids (2007) Discrete Appl. Math., 155, pp. 1731-1744
  • Cumby, J., Attfield, J.P., Ellipsoidal Analysis of Coordination Polyhedra (2017) Nat. Commun., 8, p. 14235

Citas:

---------- APA ----------
Alcoba, D.R., Oña, O.B., Massaccesi, G.E., Torre, A., Lain, L., Melo, J.I., Peralta, J.E.,..., Oliva-Enrich, J.M. (2018) . Magnetic Properties of Mononuclear Co(II) Complexes with Carborane Ligands. Inorganic Chemistry, 57(13), 7763-7769.
http://dx.doi.org/10.1021/acs.inorgchem.8b00815
---------- CHICAGO ----------
Alcoba, D.R., Oña, O.B., Massaccesi, G.E., Torre, A., Lain, L., Melo, J.I., et al. "Magnetic Properties of Mononuclear Co(II) Complexes with Carborane Ligands" . Inorganic Chemistry 57, no. 13 (2018) : 7763-7769.
http://dx.doi.org/10.1021/acs.inorgchem.8b00815
---------- MLA ----------
Alcoba, D.R., Oña, O.B., Massaccesi, G.E., Torre, A., Lain, L., Melo, J.I., et al. "Magnetic Properties of Mononuclear Co(II) Complexes with Carborane Ligands" . Inorganic Chemistry, vol. 57, no. 13, 2018, pp. 7763-7769.
http://dx.doi.org/10.1021/acs.inorgchem.8b00815
---------- VANCOUVER ----------
Alcoba, D.R., Oña, O.B., Massaccesi, G.E., Torre, A., Lain, L., Melo, J.I., et al. Magnetic Properties of Mononuclear Co(II) Complexes with Carborane Ligands. Inorg. Chem. 2018;57(13):7763-7769.
http://dx.doi.org/10.1021/acs.inorgchem.8b00815