Artículo

Boubeta, F.M.; Bieza, S.A.; Bringas, M.; Estrin, D.A.; Boechi, L.; Bari, S.E. "Mechanism of Sulfide Binding by Ferric Hemeproteins" (2018) Inorganic Chemistry. 57(13):7591-7600
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The reaction of hydrogen sulfide (H2S) with hemeproteins is a key physiological reaction; still, its mechanism and implications are not completely understood. In this work, we propose a combination of experimental and theoretical tools to shed light on the reaction in model system microperoxidase 11 (MP11-FeIII) and myoglobin (Mb-FeIII), from the estimation of the intrinsic binding constants of the species H2S and hydrosulfide (HS-), and the computational description of the overall binding process. Our results show that H2S and HS- are the main reactive species in Mb-FeIII and MP11-FeIII, respectively, and that the magnitude of their intrinsic binding constants are similar to most of the binding constants reported so far for hemeproteins systems and model compounds. However, while the binding of HS- to Mb-FeIII was negligible, the binding of H2S to MP11-FeIII was significant, providing a frame for a discriminated analysis of both species and revealing differential mechanistic aspects. A joint inspection of the kinetic data and the free energy profiles of the binding processes suggests that a dissociative mechanism with the release of a coordinated water molecule as rate limiting step is operative in the binding of H2S to Mb-FeIII and that the binding of HS- is prevented in the access to the protein matrix. For the MP11-FeIII case, where no access restrictions for the ligands are present, an associative component in the mechanism seems to be operative. Overall, the results suggest that if accessing the active site then both H2S and HS- are capable of binding a ferric heme moiety. Copyright © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Mechanism of Sulfide Binding by Ferric Hemeproteins
Autor:Boubeta, F.M.; Bieza, S.A.; Bringas, M.; Estrin, D.A.; Boechi, L.; Bari, S.E.
Filiación:Instituto de Química Física de Los Materiales, Medio Ambiente y Energía, CONICET, Universidad de Buenos Aires, Buenos Aires, 1053, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires, 1053, Argentina
Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1053, Argentina
Palabras clave:hemoprotein; protein binding; sulfide; chemistry; metabolism; molecular model; pH; protein conformation; Hemeproteins; Hydrogen-Ion Concentration; Models, Molecular; Protein Binding; Protein Conformation; Sulfides
Año:2018
Volumen:57
Número:13
Página de inicio:7591
Página de fin:7600
DOI: http://dx.doi.org/10.1021/acs.inorgchem.8b00478
Título revista:Inorganic Chemistry
Título revista abreviado:Inorg. Chem.
ISSN:00201669
CODEN:INOCA
CAS:sulfide, 18496-25-8; Hemeproteins; Sulfides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00201669_v57_n13_p7591_Boubeta

Referencias:

  • Pavlik, J.W., Noll, B.C., Oliver, A.G., Schulz, C.E., Scheidt, W.R., Hydrosulfide (HS -) Coordination in Iron Porphyrinates (2010) Inorg. Chem., 49 (3), pp. 1017-1026
  • Kraus, D.W., Wittenberg, J.B., Hemoglobins of the Lucina Pectinata/Bacteria Symbiosis. I. Molecular Properties, Kinetics and Equilibria of Reactions with Ligands (1990) J. Biol. Chem., 265 (27), pp. 16043-16053
  • Wang, D., Liu, L., Wang, H., Xu, H., Chen, L., Ma, L., Li, Z., Clues for Discovering a New Biological Function of Vitreoscilla Hemoglobin in Organisms: Potential Sulfide Receptor and Storage (2016) FEBS Lett., 590 (8), pp. 1132-1142
  • Vitvitsky, V., Yadav, P.K., Kurthen, A., Banerjee, R., Sulfide Oxidation by a Noncanonical Pathway in Red Blood Cells Generates Thiosulfate and Polysulfides (2015) J. Biol. Chem., 290 (13), pp. 8310-8320
  • Bostelaar, T., Vitvitsky, V., Kumutima, J., Lewis, B.E., Yadav, P.K., Brunold, T.C., Filipovic, M., Banerjee, R., Hydrogen Sulfide Oxidation by Myoglobin (2016) J. Am. Chem. Soc., 138 (27), pp. 8476-8488
  • Boechi, L., Arrar, M., Martí, M.A., Olson, J.S., Roitberg, A.E., Estrin, D.A., Hydrophobic Effect Drives Oxygen Uptake in Myoglobin via Histidine E7 (2013) J. Biol. Chem., 288 (9), pp. 6754-6762
  • Pietri, R., Lewis, A., León, R.G., Casabona, G., Kiger, L., Yeh, S.-R., Fernandez-Alberti, S., López-Garriga, J., Factors Controlling the Reactivity of Hydrogen Sulfide with Hemeproteins (2009) Biochemistry, 48 (22), pp. 4881-4894
  • Pietri, R., León, R.G., Kiger, L., Marden, M.C., Granell, L.B., Cadilla, C.L., López-Garriga, J., Hemoglobin i from Lucina Pectinata: A Model for Distal Heme-Ligand Control (2006) Biochim. Biophys. Acta, Proteins Proteomics, 1764 (4), pp. 758-765
  • Boubeta, F.M., Bari, S.E., Estrin, D.A., Boechi, L., Access and Binding of H 2 S to Hemeproteins: The Case of HbI of Lucina Pectinata (2016) J. Phys. Chem. B, 120 (36), pp. 9642-9653
  • Bieza, S.A., Boubeta, F., Feis, A., Smulevich, G., Estrin, D.A., Boechi, L., Bari, S.E., Reactivity of Inorganic Sulfide Species toward a Heme Protein Model (2015) Inorg. Chem., 54 (2), pp. 527-533
  • Watanabe, K., Suzuki, T., Kitagishi, H., Kano, K., Reaction between a Haemoglobin Model Compound and Hydrosulphide in Aqueous Solution (2015) Chem. Commun., 51 (19), pp. 4059-4061
  • Zhao, Z., Wang, D., Wang, M., Sun, X., Wang, L., Huang, X., Ma, L., Li, Z., Proximal Environment Controlling the Reactivity between Inorganic Sulfide and Heme-Peptide Model (2016) RSC Adv., 6 (82), pp. 78858-78864
  • Milani, M., Mycobacterium Tuberculosis Hemoglobin N Displays a Protein Tunnel Suited for O2 Diffusion to the Heme (2001) EMBO J., 20 (15), pp. 3902-3909
  • Elber, R., Ligand Diffusion in Globins: Simulations versus Experiment (2010) Curr. Opin. Struct. Biol., 20 (2), pp. 162-167
  • Perutz, M.F., Mathews, F.S., An X-Ray Study of Azide Methaemoglobin (1966) J. Mol. Biol., 21 (1), pp. 199-202
  • Scott, E.E., Gibson, Q.H., Olson, J.S., Mapping the Pathways for O 2 Entry into and Exit from Myoglobin (2001) J. Biol. Chem., 276 (7), pp. 5177-5188
  • Brunori, M., Structural Dynamics of Myoglobin (2000) Biophys. Chem., 86 (23), pp. 221-230
  • Brunori, M., Vallone, B., Cutruzzola, F., Travaglini-Allocatelli, C., Berendzen, J., Chu, K., Sweet, R.M., Schlichting, I., The Role of Cavities in Protein Dynamics: Crystal Structure of a Photolytic Intermediate of a Mutant Myoglobin (2000) Proc. Natl. Acad. Sci. U. S. A., 97 (5), pp. 2058-2063
  • Milani, M., Pesce, A., Ouellet, Y., Dewilde, S., Friedman, J., Ascenzi, P., Guertin, M., Bolognesi, M., Heme-Ligand Tunneling in Group i Truncated Hemoglobins (2004) J. Biol. Chem., 279 (20), pp. 21520-21525
  • Mishra, S., Meuwly, M., Nitric Oxide Dynamics in Truncated Hemoglobin: Docking Sites, Migration Pathways, and Vibrational Spectroscopy from Molecular Dynamics Simulations (2009) Biophys. J., 96 (6), pp. 2105-2118
  • Ouellet, Y.H., Daigle, R., Lagüe, P., Dantsker, D., Milani, M., Bolognesi, M., Friedman, J.M., Guertin, M., Ligand Binding to Truncated Hemoglobin N from Mycobacterium Tuberculosis Is Strongly Modulated by the Interplay between the Distal Heme Pocket Residues and Internal Water (2008) J. Biol. Chem., 283 (40), pp. 27270-27278
  • Goldbeck, R.A., Bhaskaran, S., Ortega, C., Mendoza, J.L., Olson, J.S., Soman, J., Kliger, D.S., Esquerra, R.M., Water and Ligand Entry in Myoglobin: Assessing the Speed and Extent of Heme Pocket Hydration after CO Photodissociation (2006) Proc. Natl. Acad. Sci. U. S. A., 103 (5), pp. 1254-1259
  • Olson, J.S., Phillips, G.N., Myoglobin Discriminates between O2, NO, and CO by Electrostatic Interactions with the Bound Ligand (1997) JBIC, J. Biol. Inorg. Chem., 2 (4), pp. 544-552
  • Bustamante, J.P., Abbruzzetti, S., Marcelli, A., Gauto, D., Boechi, L., Bonamore, A., Boffi, A., Foggi, P., Ligand Uptake Modulation by Internal Water Molecules and Hydrophobic Cavities in Hemoglobins (2014) J. Phys. Chem. B, 118 (5), pp. 1234-1245
  • Bustamante, J.P., Szretter, M.E., Sued, M., Martí, M.A., Estrin, D.A., Boechi, L., A Quantitative Model for Oxygen Uptake and Release in a Family of Hemeproteins (2016) Bioinformatics, 32 (12), pp. 1805-1813
  • Cerda, J., Echevarria, Y., Morales, E., López-Garriga, J., Resonance Raman Studies of the Heme-Ligand Active Site of Hemoglobin i FromLucina Pectinata (1999) Biospectroscopy, 5 (5), pp. 289-301
  • Nicoletti, F.P., Comandini, A., Bonamore, A., Boechi, L., Boubeta, F.M., Feis, A., Smulevich, G., Boffi, A., Sulfide Binding Properties of Truncated Hemoglobins (2010) Biochemistry, 49 (10), pp. 2269-2278
  • Ascenzi, P., Sbardella, D., Santucci, R., Coletta, M., Cyanide Binding to Ferrous and Ferric Microperoxidase-11 (2016) JBIC, J. Biol. Inorg. Chem., 21 (4), pp. 511-522
  • Dou, Y., Olson, J.S., Wilkinson, A.J., Ikeda-Saito, M., Mechanism of Hydrogen Cyanide Binding to Myoglobin (1996) Biochemistry, 35 (22), pp. 7107-7113
  • Pálinkás, Z., Furtmüller, P.G., Nagy, A., Jakopitsch, C., Pirker, K.F., Magierowski, M., Jasnos, K., Nagy, P., Interactions of Hydrogen Sulfide with Myeloperoxidase: Sulfide Is a Substrate and Inhibitor of Myeloperoxidase (2015) Br. J. Pharmacol., 172 (6), pp. 1516-1532
  • Hartle, M.D., Prell, J.S., Pluth, M.D., Spectroscopic Investigations into the Binding of Hydrogen Sulfide to Synthetic Picket-Fence Porphyrins (2016) Dalton Trans., 45 (11), pp. 4843-4853
  • Jensen, B., Fago, A., Reactions of Ferric Hemoglobin and Myoglobin with Hydrogen Sulfide under Physiological Conditions (2018) J. Inorg. Biochem., 182, pp. 133-140
  • Mot, A.C., Bischin, C., Damian, G., Attia, A.A.A., Gal, E., Dina, N., Leopold, N., Silaghi-Dumitrescu, R., Fe(III) - Sulfide Interaction in Globins: Characterization and Quest for a Putative Fe(IV)-Sulfide Species (2018) J. Inorg. Biochem., 179, pp. 32-39
  • Marques, H.M., Insights into Porphyrin Chemistry Provided by the Microperoxidases, the Haempeptides Derived from Cytochrome C (2007) Dalton Trans., (39), p. 4371
  • Carraway, A.D., Povlock, S.L., Houston, M.L., Johnston, D.S., Peterson, J., Monomeric Ferric Heme Peptide Derivatives: Model Systems for Hemoproteins (1995) J. Inorg. Biochem., 60 (4), pp. 267-276
  • Marques, H., Perry, C., Hemepeptide Models for Hemoproteins: The Behavior of -Acetylmicroperoxidase-11 in Aqueous Solution (1999) J. Inorg. Biochem., 75 (4), pp. 281-291
  • (2016) Mathematica, , version 10.4; Wolfram Research Inc: Champaign, IL
  • Case, D.A., Babin, V., Berryman, J.T., Betz, R.M., Cai, Q., Cerutti, D.S., Cheatham, E.T., III, Gohlke, H., (2014) AMBER 14, , University of California: San Francisco, CA
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., Shaw, D.E., Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field (2010) Proteins: Struct., Funct., Genet., pp. 1950-1958
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Pople, J.A., (2004) Gaussian 03, , revision C.02; Gaussian, Inc. Wallingford, CT
  • Soldatova, A.V., Ibrahim, M., Olson, J.S., Czernuszewicz, R.S., Spiro, T.G., New Light on NO Bonding in Fe(III) Heme Proteins from Resonance Raman Spectroscopy and DFT Modeling (2010) J. Am. Chem. Soc., 132 (13), pp. 4614-4625
  • Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., Dioxygen Affinity in Heme Proteins Investigated by Computer Simulation (2006) J. Inorg. Biochem., 100 (4), pp. 761-770
  • Capece, L., Marti, M.A., Crespo, A., Doctorovich, F., Estrin, D.A., Heme Protein Oxygen Affinity Regulation Exerted by Proximal Effects (2006) J. Am. Chem. Soc., 128 (38), pp. 12455-12461
  • Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., Estrin, D.A., Nitric Oxide Reactivity with Globins as Investigated Through Computer Simulation (2008) Methods Enzymol., 437, pp. 477-498
  • Martí, M.A., Capece, L., Bikiel, D.E., Falcone, B., Estrin, D.A., Oxygen Affinity Controlled by Dynamical Distal Conformations: The Soybean Leghemoglobin and the Paramecium Caudatum Hemoglobin Cases (2007) Proteins: Struct., Funct., Genet., 68 (2), pp. 480-487
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77 (18), pp. 3865-3868
  • Nadra, A.D., Martí, M.A., Pesce, A., Bolognesi, M., Estrin, D.A., Exploring the Molecular Basis of Heme Coordination in Human Neuroglobin (2008) Proteins: Struct., Funct., Genet., 71 (2), pp. 695-705
  • Howes, B.D., Giordano, D., Boechi, L., Russo, R., Mucciacciaro, S., Ciaccio, C., Sinibaldi, F., Estrin, D.A., The Peculiar Heme Pocket of the 2/2 Hemoglobin of Cold-Adapted Pseudoalteromonas Haloplanktis TAC125 (2011) JBIC, J. Biol. Inorg. Chem., 16 (2), pp. 299-311
  • Capece, L., Lewis-Ballester, A., Yeh, S.-R., Estrin, D.A., Marti, M.A., Complete Reaction Mechanism of Indoleamine 2,3-Dioxygenase as Revealed by QM/MM Simulations (2012) J. Phys. Chem. B, 116 (4), pp. 1401-1413
  • Arroyo Manez, P., Lu, C., Boechi, L., Martí, M.A., Shepherd, M., Wilson, J.L., Poole, R.K., Estrin, D.A., Role of the Distal Hydrogen-Bonding Network in Regulating Oxygen Affinity in the Truncated Hemoglobin III from Campylobacter Jejuni (2011) Biochemistry, 50 (19), pp. 3946-3956
  • Bidon-Chanal, A., Martí, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A., Ligand-Induced Dynamical Regulation of NO Conversion in Mycobacterium Tuberculosis Truncated Hemoglobin-N (2006) Proteins: Struct., Funct., Genet., 64 (2), pp. 457-464
  • Oliveira, A., Singh, S., Bidon-Chanal, A., Forti, F., Martí, M.A., Boechi, L., Estrin, D.A., Luque, F.J., Role of PheE15 Gate in Ligand Entry and Nitric Oxide Detoxification Function of Mycobacterium Tuberculosis Truncated Hemoglobin N (2012) PLoS One, 7 (11), p. e49291
  • Boechi, L., Martí, M.A., Milani, M., Bolognesi, M., Luque, F.J., Estrin, D.A., Structural Determinants of Ligand Migration in Mycobacterium Tuberculosis Truncated Hemoglobin O (2008) Proteins: Struct., Funct., Genet., 73 (2), pp. 372-379
  • Chai, J.-D., Head-Gordon, M., Long-Range Corrected Hybrid Density Functionals with Damped Atom-atom Dispersion Corrections (2008) Phys. Chem. Chem. Phys., 10 (44), p. 6615
  • Sun, W., Nešić, S., Young, D., Woollam, R.C., Equilibrium Expressions Related to the Solubility of the Sour Corrosion Product Mackinawite (2008) Ind. Eng. Chem. Res., 47 (5), pp. 1738-1742
  • Li, Q., Lancaster, J.R., Chemical Foundations of Hydrogen Sulfide Biology (2013) Nitric Oxide, 35, pp. 21-34
  • Traylor, T.G., Deardurff, L.A., Coletta, M., Ascenzi, P., Antonini, E., Brunori, M., Reactivity of Ferrous Heme Proteins at Low pH (1983) J. Biol. Chem., 258 (20), pp. 12147-12148
  • Giggenbach, W., Optical Spectra and Equilibrium Distribution of Polysulfide Ions in Aqueous Solution at 20.Deg (1972) Inorg. Chem., 11 (6), pp. 1201-1207
  • Nagy, P., Mechanistic Chemical Perspective of Hydrogen Sulfide Signaling (2015) Methods Enzymol., 554, pp. 3-29
  • Nagy, P., Pálinkás, Z., Nagy, A., Budai, B., Tóth, I., Vasas, A., Chemical Aspects of Hydrogen Sulfide Measurements in Physiological Samples (2014) Biochim. Biophys. Acta, Gen. Subj., 1840 (2), pp. 876-891
  • Galardon, E., Huguet, F., Herrero, C., Ricoux, R., Artaud, I., Padovani, D., Reactions of Persulfides with the Heme Cofactor of Oxidized Myoglobin and Microperoxidase 11: Reduction or Coordination (2017) Dalton Trans., 46 (24), pp. 7939-7946
  • Ruetz, M., Kumutima, J., Lewis, B.E., Filipovic, M.R., Lehnert, N., Stemmler, T.L., Banerjee, R., A Distal Ligand Mutes the Interaction of Hydrogen Sulfide with Human Neuroglobin (2017) J. Biol. Chem., 292 (16), pp. 6512-6528
  • Laverman, L.E., Ford, P.C., Mechanistic Studies of Nitric Oxide Reactions with Water Soluble Iron(II), Cobalt(II), and Iron(III) Porphyrin Complexes in Aqueous Solutions: Implications for Biological Activity (2001) J. Am. Chem. Soc., 123 (47), pp. 11614-11622
  • Polticelli, F., Zobnina, V., Ciaccio, C., De Sanctis, G., Ascenzi, P., Coletta, M., Enhanced Heme Accessibility in Horse Heart Mini-Myoglobin: Insights from Molecular Modelling and Reactivity Studies (2015) Arch. Biochem. Biophys., 585, pp. 1-9
  • De Sanctis, G., Petrella, G., Ciaccio, C., Feis, A., Smulevich, G., Coletta, M., A Comparative Study on Axial Coordination and Ligand Binding in Ferric Mini Myoglobin and Horse Heart Myoglobin (2007) Biophys. J., 93 (6), pp. 2135-2142
  • Forti, F., Boechi, L., Estrin, D.A., Marti, M.A., Comparing and Combining Implicit Ligand Sampling with Multiple Steered Molecular Dynamics to Study Ligand Migration Processes in Heme Proteins (2011) J. Comput. Chem., 32 (10), pp. 2219-2231
  • Cuevasanta, E., Lange, M., Bonanata, J., Coitino, E.L., Ferrer-Sueta, G., Filipovic, M.R., Alvarez, B., Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide (2015) J. Biol. Chem., 290 (45), pp. 26866-26880
  • Zhong, F., Lisi, G.P., Collins, D.P., Dawson, J.H., Pletneva, E.V., Redox-Dependent Stability, Protonation, and Reactivity of Cysteine-Bound Heme Proteins (2014) Proc. Natl. Acad. Sci. U. S. A., 111 (3), pp. E306-E315
  • Marques, H.M., Peroxidase Activity of the Hemeoctapeptide N -Acetylmicroperoxidase-8 (2005) Inorg. Chem., 44 (18), pp. 6146-6148

Citas:

---------- APA ----------
Boubeta, F.M., Bieza, S.A., Bringas, M., Estrin, D.A., Boechi, L. & Bari, S.E. (2018) . Mechanism of Sulfide Binding by Ferric Hemeproteins. Inorganic Chemistry, 57(13), 7591-7600.
http://dx.doi.org/10.1021/acs.inorgchem.8b00478
---------- CHICAGO ----------
Boubeta, F.M., Bieza, S.A., Bringas, M., Estrin, D.A., Boechi, L., Bari, S.E. "Mechanism of Sulfide Binding by Ferric Hemeproteins" . Inorganic Chemistry 57, no. 13 (2018) : 7591-7600.
http://dx.doi.org/10.1021/acs.inorgchem.8b00478
---------- MLA ----------
Boubeta, F.M., Bieza, S.A., Bringas, M., Estrin, D.A., Boechi, L., Bari, S.E. "Mechanism of Sulfide Binding by Ferric Hemeproteins" . Inorganic Chemistry, vol. 57, no. 13, 2018, pp. 7591-7600.
http://dx.doi.org/10.1021/acs.inorgchem.8b00478
---------- VANCOUVER ----------
Boubeta, F.M., Bieza, S.A., Bringas, M., Estrin, D.A., Boechi, L., Bari, S.E. Mechanism of Sulfide Binding by Ferric Hemeproteins. Inorg. Chem. 2018;57(13):7591-7600.
http://dx.doi.org/10.1021/acs.inorgchem.8b00478