Artículo

Bieza, S.A.; Boubeta, F.; Feis, A.; Smulevich, G.; Estrin, D.A.; Boechi, L.; Bari, S.E. "Reactivity of inorganic sulfide species toward a heme protein model" (2015) Inorganic Chemistry. 54(2):527-533
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The reactivity of inorganic sulfide species toward heme peptides was explored under biorelevant conditions in order to unravel the molecular details of the reactivity of the endogenous hydrogen sulfide toward heme proteins. Unlike ferric porphyrinates, which are reduced by inorganic sulfide, some heme proteins can form stable FeIII-sulfide adducts. To isolate the protein factors ruling the redox chemistry, we used as a system model, the undecapeptide microperoxidase (MP11), a heme peptide derived from cytochrome c proteolysis that retains the proximal histidine bound to the FeIII atom. Upon addition of gaseous hydrogen sulfide (H2S) at pH 6.8, the UV-vis spectra of MP11 closely resembled those of the low-spin ferric hydroxo complex (only attained at an alkaline pH) and cysteine or alkylthiol derivatives, suggesting that the FeIII reduction was prevented. The low-frequency region of the resonance Raman spectrum revealed the presence of an FeIII-S band at 366 cm-1 and the general features of a low-spin hexacoordinated heme. Anhydrous sodium sulfide (Na2S) was the source of sulfide of choice for the kinetic evaluation of the process. Theoretical calculations showed no distal stabilization mechanisms for bound sulfide species in MP11, highlighting a key role of the proximal histidine for the stabilization of the FeIII-S adducts of heme compounds devoid of distal counterparts, which is significant with regard to the biochemical reactivity of endogenous hydrogen sulfide. © 2014 American Chemical Society.

Registro:

Documento: Artículo
Título:Reactivity of inorganic sulfide species toward a heme protein model
Autor:Bieza, S.A.; Boubeta, F.; Feis, A.; Smulevich, G.; Estrin, D.A.; Boechi, L.; Bari, S.E.
Filiación:Departamento de Química Inorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Dipartimento di Chimica Ugo Schiff, Universita di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze, 50019, Italy
Palabras clave:hemoprotein; hydrogen sulfide; oligopeptide; peroxidase; protein binding; sodium sulfide; sulfide; chemistry; metabolism; molecular dynamics; protein conformation; Hemeproteins; Hydrogen Sulfide; Molecular Dynamics Simulation; Oligopeptides; Peroxidases; Protein Binding; Protein Conformation; Sulfides
Año:2015
Volumen:54
Número:2
Página de inicio:527
Página de fin:533
DOI: http://dx.doi.org/10.1021/ic502294z
Título revista:Inorganic Chemistry
Título revista abreviado:Inorg. Chem.
ISSN:00201669
CODEN:INOCA
CAS:hydrogen sulfide, 15035-72-0, 7783-06-4; peroxidase, 9003-99-0; sodium sulfide, 1313-82-2; sulfide, 18496-25-8; Hemeproteins; Hydrogen Sulfide; microperoxidase; Oligopeptides; Peroxidases; sodium sulfide; Sulfides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00201669_v54_n2_p527_Bieza

Referencias:

  • Stipanuk, M.H., Beck, P.W., (1982) Biochem. J., 206, pp. 267-277
  • Abe, K., Kimura, H., (1996) J. Neurosci., 16, pp. 1066-1071
  • Hosoki, R., Matsiki, N., Kimura, H., (1997) Biochem. Biophys. Res. Commun., 237, pp. 527-531
  • Beauchamp, R.O., Bus, J.S., Popp, J.A., Boreiko, C.J., Andjelkhovich, D.A., (1984) Crit. Rev. Toxicol., 13, pp. 25-97
  • Polhemus, D.J., Lefer, D.J., (2014) Circ. Res., 114, pp. 730-737
  • Kamoun, P., Belardinelli, M., Chabli, A., Lallouchi, K., Chadefaux-Vekemans, B., (2003) Am. J. Med. Genet., Part A, 116, pp. 310-311
  • Ottani, A., Zaffe, D., Galantucci, M., Strinati, F., Lodi, R., Guarini, S., (2013) Neurobiol. Learn. Mem., 104, pp. 82-91
  • Filipovic, M.R., Miljkovic, J., Allgäuer, A., Chaurio, R., Shubina, T., Herrmann, M., Ivanovic-Burmazovic, I., (2012) Biochem. J., 441, pp. 609-621
  • Lu, M., Hu, L.F., Hu, G., Bian, J.S., (2008) Free Radical Biol. Med., 45, pp. 1705-1713
  • Collman, J.P., Ghosh, S., Dey, A., Decréau, R.A., (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 22090-22095
  • Ida, T., Sawa, T., Ihara, H., Tsuchiya, Y., Watanabe, Y., Jamagai, Y., Suematsu, M., Akaike, T., (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. 7606-7611
  • Wang, R., (2002) FASEB J., 16, pp. 1793-1798
  • Mani, S., Cao, W., Wu, L., Wang, R., (2014) Nitric Oxide, 41, pp. 62-71
  • Kimura, H., (2014) Nitric Oxide, 41, pp. 4-10
  • Kolluru, G.K., Shen, X., Bir, S.C., Kevil, C.G., (2013) Nitric Oxide, 35, pp. 5-20
  • Mustafa, A.K., Gadalla, M.M., Sen, N., Kim, S., Mu, W., Gazi, S.K., Barrow, R.K., Snyder, S.H., (2009) Sci. Signaling, 2, p. 72
  • Wang, R., (2014) Trends Biochem. Sci., 39, pp. 227-232
  • Kimura, H., (2013) Neurochem. Int., 63, pp. 492-497
  • Nguyen, B.D., Zhao, X., Vyas, K., La Mar, G.N., Lile, R.A., Brucker, E.A., Phillips, G.N., Jr., Wittenberg, J.B., (1998) J. Biol. Chem., 273, pp. 9517-9526
  • Boffi, A., Rizzi, M., Monacelli, F., Ascenzi, P., (2000) Biochim. Biophys. Acta, 1523, pp. 206-208
  • Brittain, T., Yosaatmadja, Y., Henty, K., (2008) IUBMB Life, 60, pp. 135-138
  • Nishimori, I., Vullo, D., Minakuchi, T., Scozzafava, A., Osman, S., Alothman, Z., Capasso, C., Supuran, C.T., (2014) Bioorg. Med. Chem. Lett., 24, pp. 1127-1132
  • Li, Q., Lancaster, J.R., Jr., (2013) Nitric Oxide, 35, pp. 21-34
  • Wedmann, R., Bertlein, S., MacInkovic, I., Böltz, S., Milikovic, J.L., Muñoz, L.E., Herrman, M., Filipovic, M.R., (2014) Nitric Oxide, 41, pp. 85-96
  • Nagy, P., Pálinkás, Z., Nagy, A., Budai, B., Tóth, I., Vasas, A., (2014) Biochem. Biophys. Acta., 1840, pp. 876-891
  • Hughes, M.N., Centelles, M.N., Moore, K.P., (2009) Free Radical Biol. Med., 47, pp. 1346-1353
  • Greiner, R., Pálinkás, Z., Bäsel, K., Becher, D., Antelmann, H., Nagy, P., Dick, T.P., (2013) Antioxid. Redox Signaling, 19, pp. 1749-1765
  • Sun, W., Nesic, S., Young, D., Woollam, R.C., (2008) Ind. Eng. Chem. Res., 47, pp. 1738-1742
  • Keilin, D., (1933) Proc. R. Soc. London, Ser. B, 133, pp. 393-404
  • Libardi, S., Pindstrup, H., Cardoso, D.R., Skibsted, L.H., (2013) J. Agric. Food Chem., 61, pp. 2883-2888
  • Ríos-González, B.B., Román-Morales, E.M., Pietri, R., López-Garriga, J., (2014) J. Inorg. Biochem., 133, pp. 78-86
  • Park, C.M., Nagel, R.L., (1984) N. Engl. J. Med., 310, pp. 1579-1584
  • Szábo, C., (2007) Nat. Rev. Drug Discovery, 6, pp. 917-935
  • English, D.R., Hendrickson, D.N., Süslick, K.S., Eigenbrot, C.W., Jr., Scheidt, W.R., (1984) J. Am. Chem. Soc., 106, pp. 7258-7259
  • Balch, A.L., Cornman, C.R., Safari, N., (1990) Organometallics, 9, pp. 2420-2421
  • Pavlik, J.W., Noll, B.C., Oliver, A.G., Schulz, C.E., Scheidt, W.R., (2010) Inorg. Chem., 49, pp. 1017-1026
  • Hill, B.C., Nicholls, P., (1980) Can. J. Biochem., 58, pp. 499-503
  • Nicoletti, F.P., Thompson, M.K., Franzen, S., Smulevich, G., (2011) J. Biol. Inorg. Chem., 16, pp. 611-619
  • Kraus, D.W., Wittenberg, J.B., (1990) JBIC, J. Biol. Chem., 265, pp. 6043-6053
  • Pietri, R., Lewis, A., León, R., Casabona, G., Kiger, L., Yeh, S.R., Fernández-Alberti, S., López-Garriga, J., (2009) Biochemistry, 48, pp. 4881-4894
  • Marques, H.M., (2007) Dalton Trans., pp. 4371-4385
  • Munro, O.Q., Marques, H.M., (1996) Inorg.Chem., 35, pp. 3752-3767
  • Low, D.W., Winkler, J.R., Gray, H.B., (1996) J. Am. Chem. Soc., 118, pp. 117-120
  • Laberge, M., Vregdenhil, A.J., Vanderkooi, J.M., Butler, I.S.J., (1998) J. Biomol. Struct. Dyn., 15, pp. 1039-1050
  • Carraway, A.D., McCollum, M.G., Peterson, J., (1996) Inorg. Chem., 35, pp. 6885-6891
  • Baldwin, D.A., Marques, H.M., Pratt, J.M., (1987) J. Inorg. Biochem., 30, pp. 203-217
  • Sharma, V.S., Schmidt, M.R., Ranney, H.M., (1976) J. Biol. Chem., 251, pp. 4267-4272
  • Cheek, J., Low, D.W., Gray, H.B., Dawson, J.H., (1998) Biochem. Biophys. Res. Commun., 253, pp. 195-198
  • Tezcan, F.A., Winkler, J.R., Gray, H.B., (1998) J. Am. Chem. Soc., 120, pp. 13383-13388
  • Riposati, A., Prieto, T., Shida, C.S., Nantes, I.L., Nascimento, O.R., (2006) J. Inorg. Biochem., 100, pp. 226-238
  • Hamelberg, D., Mongan, J., McCammon, J.A., (2004) J. Chem. Phys., 120, pp. 11919-11929
  • Sadeque, A.J.M., Shimizu, T., Hatano, M., (1987) Inorg. Chim. Acta, 135, pp. 109-113
  • Marques, H.M., Rousseau, A., (1996) Inorg. Chim. Acta, 248, pp. 115-119
  • Kalampounias, A.G., Andrikopoulos, K.S., Yannopoulos, S.N., (2003) J. Chem. Phys., 118, pp. 8460-8467
  • Kimura, Y., Mikami, Y., Osumi, K., Tsugane, M., Oka, J.-I., Kimura, H., (2013) FASEB J., 27, pp. 2451-2457
  • Khan, S.A.K., Hughes, R.W., Reynolds, P.A., (2011) Vib. Spectrosc., 56, pp. 241-244
  • Nicoletti, F.P., Comandini, A., Bonamore, A., Boechi, L., Boubeta, F.M., Feis, A., Smulevich, G., Boffi, A., (2010) Biochemistry, 49, pp. 2269-2278
  • Ramos-Alvarez, C., Yoo, B.K., Pietri, R., Lamarre, I., Martin, J.L., Lopez-Garriga, J., Negrerie, M., (2013) Biochemistry, 52, pp. 7007-7021
  • Bonamore, A., Ilari, A., Giangiacomo, L., Bellelli, A., Morea, V., Boffi, A., (2005) FEBS J., 272, pp. 4189-4201
  • Smith, M.C., McLendon, G., (1980) J. Am. Chem. Soc., 102, pp. 5666-5670
  • Marques, H.M., Baldwin, D.A., Pratt, J.M., (1987) J. Inorg. Biochem., 29, pp. 77-91
  • Fernández-Alberti, S., Bacelo, D.E., Binning, R.C., Jr., Echave, J., Chergui, M., López-Garriga, J., (2006) Biophys. J., 91, pp. 1698-1709
  • Battistuzzi, G., Borsari, M., Cowan, J.A., Ranieri, A., Sola, M., (2002) J. Am. Chem. Soc., 124, pp. 5315-5324
  • Zhong, F., Lisi, G.P., Collins, D.P., Dawson, J.H., Pletneva, E.V., (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. 309-E315

Citas:

---------- APA ----------
Bieza, S.A., Boubeta, F., Feis, A., Smulevich, G., Estrin, D.A., Boechi, L. & Bari, S.E. (2015) . Reactivity of inorganic sulfide species toward a heme protein model. Inorganic Chemistry, 54(2), 527-533.
http://dx.doi.org/10.1021/ic502294z
---------- CHICAGO ----------
Bieza, S.A., Boubeta, F., Feis, A., Smulevich, G., Estrin, D.A., Boechi, L., et al. "Reactivity of inorganic sulfide species toward a heme protein model" . Inorganic Chemistry 54, no. 2 (2015) : 527-533.
http://dx.doi.org/10.1021/ic502294z
---------- MLA ----------
Bieza, S.A., Boubeta, F., Feis, A., Smulevich, G., Estrin, D.A., Boechi, L., et al. "Reactivity of inorganic sulfide species toward a heme protein model" . Inorganic Chemistry, vol. 54, no. 2, 2015, pp. 527-533.
http://dx.doi.org/10.1021/ic502294z
---------- VANCOUVER ----------
Bieza, S.A., Boubeta, F., Feis, A., Smulevich, G., Estrin, D.A., Boechi, L., et al. Reactivity of inorganic sulfide species toward a heme protein model. Inorg. Chem. 2015;54(2):527-533.
http://dx.doi.org/10.1021/ic502294z