Artículo

Alborés, P.; Slep, L.D.; Eberlin, L.S.; Corilo, Y.E.; Eberlin, M.N.; Benítez, G.; Vela, M.E.; Salvarezza, R.C.; Baraldo, L.M. "From monomers to geometry-constrained molecules: One step further toward cyanide bridged wires" (2009) Inorganic Chemistry. 48(23):11226-11235
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We report on the synthesis and properties of a family of linear cyanide bridged mixed-valence heptanuclear complexes with the formula: trans-[L 4RuII{(μ-NC)FeIII(NC)4(μ-CN) RuIIL′4(μ-NC)FeIII(CN) 5}2]6- (with L and L′ a para substituted pyridine). We also report on the properties of a related pentanuclear complex. These oligomers were purified by size exclusion chromatography, characterized by electrospray ionization (ESI) mass spectrometry and elemental analysis, and their linear shape was confirmed by scanning tunneling microscopy (STM). These complexes present a rich electrochemistry associated with the seven redox active centers. The redox potential split of identical fragments indicates that there is considerable communication along the cyanide bridged backbone of the compounds, even for centers more than 3 nm apart. This small attenuation of the interaction at long distances make these cyanide bridged compounds good candidates for molecular wires. Interestingly, the extent of the communication depends on the relative energy of the fragments, as evaluated by their redox potentials, providing a guide for improvement of this interesting property. © 2009 American Chemical Society.

Registro:

Documento: Artículo
Título:From monomers to geometry-constrained molecules: One step further toward cyanide bridged wires
Autor:Alborés, P.; Slep, L.D.; Eberlin, L.S.; Corilo, Y.E.; Eberlin, M.N.; Benítez, G.; Vela, M.E.; Salvarezza, R.C.; Baraldo, L.M.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Ciudad Universitaria, Pabellón 2, 3er piso, C1 428EHA Buenos Aires, Argentina
Instituto de Investigaciones Fisicoquimicas Teóricas y Aplicadas, INIFTA-CONICET- UNLP, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP Campinas, São Paulo 13083-970, Brazil
Año:2009
Volumen:48
Número:23
Página de inicio:11226
Página de fin:11235
DOI: http://dx.doi.org/10.1021/ic901710x
Título revista:Inorganic Chemistry
Título revista abreviado:Inorg. Chem.
ISSN:00201669
CODEN:INOCA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00201669_v48_n23_p11226_Albores

Referencias:

  • Vogler, A., Kisslinger, J., (1982) Am. Chem. Soc, 104, pp. 2311-2312
  • Siddiqui, S., Henderson, W.W., Shepherd, R.E., (1987) Inorg. Chem, 26, pp. 3101-3107
  • Vogler, A., Osman, A.H., Kunkely, H., (1987) Inorg. Chem, 26, pp. 2337-2340
  • Burewicz, A., Haim, A., (1988) Inorg. Chem, 27, pp. 1611-1614
  • Cutin, E.H., Katz, N.E., (1993) Polyhedron, 12, pp. 955-960
  • Laidlaw, W.M., Denning, R.G., Verbiest, T., Chauchard, E., Persoons, A., (1993) Nature, 363, pp. 58-60
  • Forlano, P., Baraldo, L.M., Olabe, J.A., Della Védova, C.O., (1994) Inorg. Chim. Acta, 223, pp. 31-42
  • Laidlaw, W.M., Denning, R.G., (1994) J. Chem. Soc., Dalton Trans, pp. 1987-1994
  • Laidlaw, W.M., Denning, R.G., (1994) Polyhedron, 13, pp. 1875-1880
  • Fagalde, F., Katz, N.E., (1995) Polyhedron, 14, pp. 1213-1220
  • Kunkely, H., Pawlowski, V., Vogler, A., (1994) Inorg. Chim. Acta, 225, pp. 327-330
  • Forlano, P., Cukiernik, F.D., Poizat, O., Olabe, J.A., (1997) J. Chem. Soc.-Dalton Trans, pp. 1595-1599
  • Díaz, C., Arancibia, A., (1998) Inorg. Chim. Acta, 269, pp. 246-252
  • Geiss, A., Vahrenkamp, H., (2000) Inorg. Chem, 39, pp. 4029-4036
  • Vance, F.W., Slone, R.V., Stem, C.L., Hupp, J.T., (2000) Chem. Phys, 253, pp. 313-322
  • Baraldo, L.M., Forlano, P., Parise, A.R., Slep, L.D., Olabe, J.A., (2001) Coord. Chem. Rev, 219, pp. 881-921
  • Adams, C.J., Connelly, N.G., Goodwin, N.J., Hayward, O.D., Orpen, A.G., Wood, A.J., (2006) Dalton Trans, pp. 3584-3596
  • Bignozzi, C.A., Roffia, S., Scandola, F.L., (1985) Am. Chem. Soc, 107, pp. 1644-1651
  • Bignozzi, C.A., Paradisi, C., Roffia, S., Scandola, F., (1988) Inorg. Chem, 27, pp. 408-414
  • Geiss, A., Vahrenkamp, H., (1999) Eur. J. Inorg. Chem, pp. 1793-1803
  • Macatangay, A.V., Endicott, J.F., (2000) Inorg. Chem, 39, pp. 437-446
  • Pfennig, B.W., Fritchman, V.A., Hayman, K.A., (2001) Inorg. Chem, 40, pp. 255-263
  • Albores, P., Slep, L.D., Weyhermuller, T., Baraldo, L.M., (2004) Inorg. Chem, 43, pp. 6762-6773
  • Albores, P., Rossi, M.B., Baraldo, L.M., Slep, L.D., (2006) Inorg. Chem, 45, pp. 10595-10604
  • Bignozzi, C. A.; Roffia, S.; Chiorboli, C.; Davila, J.; Indelli, M. T.; Scandola, F. Inorg. Chem. 1.989, 28, 4350-4358; Geiss, A., Kolm, M.J., Janiak, C., Vahrenkamp, H., (2000) Inorg. Chem, 39, pp. 4037-4043
  • Sheng, T.L., Appelt, R., Comte, V., Vahrenkamp, H., (2003) Eur. J. Inorg. Chem, pp. 3731-3737
  • Roffia, S., Casadei, R., Paolucci, F., Paradisi, C., Bignozzi, C.A., Scandola, F., (1991) J. Electronal. Chem, 302, pp. 157-171
  • Richardson, G.N., Brand, U., Vahrenkamp, H., (1999) Inorg. Chem, 38, pp. 3070-3079
  • Appelt, R., Vahrenkamp, H., (2003) Inorg. Chim. Acta, 350, pp. 387-398
  • Oshio, H., Onodera, H., Ito, T., (2003) Chem.-Eur. J, 9, pp. 3946-3950
  • Oshio, H., Onodera, H., Tamada, O., Mizutani, H., Hikichi, T., Ito, T., (2000) Chem.-Eur. L, 6, pp. 2523-2530
  • Nihei, M., Ui, M., Hoshino, N., Oshio, H., (2008) Inorg. Chem, 47, pp. 6106-6108
  • Poulopoulou, V.G., Taube, H., Nunes, F.S., (1999) Inorg. Chem, 38, pp. 2844-2850
  • Rogez, G., Marvilliers, A., Rivière, E., Audière, J.-P., Lloret, F., Varret, F., Goujon, A., Mallah, T., (2000) Angew. Chem., Int. Ed, 39, pp. 2885-2887
  • Rogez, G., Marvilliers, A., Sarr, P., Parsons, S., Teat, S.J., Ricard, L., Mallah, T., (2002) Chem. Commun, pp. 1460-1461
  • Rogez, G., Parsons, S., Paulsen, C., Villar, V., Mallah, T., (2001) Inorg. Chem, 40, pp. 3836-3837
  • Rogez, G., Riviere, E., Mallah, T., (2003) C. R. Chim, 6, pp. 283-290
  • Geiss, A., Keller, M., Vahrenkamp, H., (1997) J. Organomet. Chem, 541, pp. 441-443
  • Von Kameke, A., Tom, G.M., Taube, H., (1978) Inorg, Chem, 17, pp. 1790-1796
  • Berry, J.F., Cotton, F.A., Lei, P., Lu, T.B., Murillo, C.A., (2003) Inorg. Chem, 42, pp. 3534-3539
  • Robertson, N., McGowan, C.A., (2003) Chem. Soc. Rev, 32, pp. 96-103
  • Cho, T.J., Moorefield, C.N., Hwang, S.H., Wang, P.S., Godinez, L.A., Bustos, E., Newkome, G.R., (2006) Eur. J. Org. Chem, pp. 4193-4200
  • Flores-Torres, S., Hutchison, G.R., Soltzberg, L.J., Abruna, H.D., (2006) J. Chem. Soc, 128, pp. 1513-1522
  • Khanra, S., Weyhermüller, T., Bill, E., Chaudhuri, P., (2006) Inorg. Chem, 45. , 5911.-5923
  • Liu, I.P.C., Benard, M., Hasanov, H., Chen, I.W.P., Tseng, W.H., Fu, M.D., Rehmer, M.M., Peng, S.M., (2007) Chem.-Eur. L, 13, pp. 8667-8677
  • Maurer, J., Sarkar, B., Kaim, W., Winter, R.F., Zalis, S., (2007) Chem.-Eur. J, 13, pp. 10257-10272
  • Yamamoto, Y., Sawa, S., Funada, Y., Morimoto, T., Falkenstrom, M., Miyasaka, H., Shishido, S., Ishitani, O., (2008) J. Am. Chem. Soc, 130, pp. 14659-14674
  • Loiseau, F., Nastasi, F., Stadler, A.M., Campagna, S., Lehn, J.M., (2007) Angew. Chem., Int. Ed, 46, pp. 6144-6147
  • Rossi, M.B., Piro, O.E., Castellano, E.E., Albores, P., Baraldo, L.M., (2008) Inorg. Chem, 47, pp. 2416-2427
  • Armarego, W.L.F., Perrin, D.D., (1996) Purification of laboratory chemicals, , 4th ed, Butterworth-Heinemann: Woburn, MA
  • Noviandri, I., Brown, K.N., Fleming, D.S., Gulyas, P.T., Lay, P.A., Masters, A.F., Phillips, L., (1999) Phys. Chem. B, 103, pp. 6713-6722
  • Nikolaou, S., Tomazela, D.M., Eberlin, M.N., Toma, H.E., (2008) Transition Met. Chem, 33, pp. 1059-1065
  • Moreira, E.Z., de Moraes, L.A.B., Eberlin, M.N., Iamamoto, Y., Nikolaou, S., (2008) Polyhedron, 27, pp. 2721-2729
  • Tomazela, D.M., Gozzo, F.C., Mayer, I., Engelmann, R.M., Araki, K., Toma, H.E., Eberlin, M.N., (2004) J. Mass Spectrom, 39, pp. 1161-1167
  • Raminelli, C., Prechtl, M.H.G., Santos, L.S., Eberlin, M.N., Comasseto, J.V., (2004) Organometallics, 23, pp. 3990-3996
  • Pereira, R.M.S., Paula, V.I., Buffon, R., Tomazela, D.M., Eberlin, M.N., (2004) Inorg. Chim. Acta, 357, pp. 2100-2106
  • (a.) Schalley, C. A.; Muller, T.; Linnartz, P.; Witt, M.; Schafer, M.; Lutzen, A. Chem.-Eur. J. 2002, 5, 3538-3551; Alves, W.A., Cerchiaro, G., Paduan, A., Tomazela, D.M., Eberlin, M.N., Ferreira, A.M.D., (2005) Inorg. Chim. Acta, 358, pp. 3581-3591
  • Toma, S.H., Nikolaou, S., Tomazela, D.M., Eberlin, M.N., Toma, H.E., (2004) Inorg. Chim. Acta, 357, pp. 2253-2260
  • Hasenknopf, B., Lehn, J.M., Boumediene, N., DupontGervais, A., VanDorsselaer, A., Kneisel, B., Fenske, D., (1997) J. Am. Chem. Soc, 119, pp. 10956-10962
  • Toma, H.E., Nikolaou, S., Eberlin, M.N., Tomazela, D.M., (2005) Polyhedron, 24, pp. 731-738
  • The orientation of the cyanide bridge is expected from the connectivity in the precursors. In previous work we did not find isomerization of the cyanide bridge and in one case we have prepared the two possible isomers (see ref 5, The properties of the two isomers are quite distinctive, especially their redox behavior. Isomerization of the bridge results in an increase in the redox potential of the RuII/III couple, while the FeIII/II couples become more irreversible because of the lability of the Fe-N(nitrile) bond. Our exploration of the redox properties of the complexes reported here show no evidence of bridge isomerization; Flanagan, J.B., Margel, S., Bard, A.J., Anson, F.C., (1978) J. Am. Chem. Soc, 100, pp. 4248-4253
  • Richardson, D.E., Taube, H., (1983) J. Am. Chem. Soc, 105, pp. 40-51
  • Sutton, J.E., Taube, H., (1981) Inorg. Chem, 20, pp. 4021-4023
  • Coe, B.J., Meyer, T.J., White, P.S., (1995) Inorg. Chem, 34, pp. 3600-3609
  • Sheng, T.L., Vahrenkamp, H., (2004) Eur. J. Inorg. Chem, pp. 1198-1203
  • D'Alessandro, D.M., Keene, F.R., (2004) Dalton Trans, pp. 3950-3954
  • We estimate the distance between the redox centers as multiples of the Fe-Ru distance of 5.05 Å observed in the trinuclear compounds; Fraysse, S., Coudret, C., Launay, J.P., (2003) J. Am. Chem. Soc, 125, pp. 5880-5888
  • Hoshino, Y., Suzuki, T., Umeda, H., (1996) Inorg. Chim. Acta, 245, pp. 87-90
  • Fabre, M., Bonvoisin, J., (2007) J. Am. Chem. Soc, 129, pp. 1434-1444
  • Launay, J.P., (2001) Chem. Soc. Rev, 30, pp. 386-397
  • Cave, R.J., Newton, M.D., (1996) Chem. Phys. Lett, 249, pp. 15-19

Citas:

---------- APA ----------
Alborés, P., Slep, L.D., Eberlin, L.S., Corilo, Y.E., Eberlin, M.N., Benítez, G., Vela, M.E.,..., Baraldo, L.M. (2009) . From monomers to geometry-constrained molecules: One step further toward cyanide bridged wires. Inorganic Chemistry, 48(23), 11226-11235.
http://dx.doi.org/10.1021/ic901710x
---------- CHICAGO ----------
Alborés, P., Slep, L.D., Eberlin, L.S., Corilo, Y.E., Eberlin, M.N., Benítez, G., et al. "From monomers to geometry-constrained molecules: One step further toward cyanide bridged wires" . Inorganic Chemistry 48, no. 23 (2009) : 11226-11235.
http://dx.doi.org/10.1021/ic901710x
---------- MLA ----------
Alborés, P., Slep, L.D., Eberlin, L.S., Corilo, Y.E., Eberlin, M.N., Benítez, G., et al. "From monomers to geometry-constrained molecules: One step further toward cyanide bridged wires" . Inorganic Chemistry, vol. 48, no. 23, 2009, pp. 11226-11235.
http://dx.doi.org/10.1021/ic901710x
---------- VANCOUVER ----------
Alborés, P., Slep, L.D., Eberlin, L.S., Corilo, Y.E., Eberlin, M.N., Benítez, G., et al. From monomers to geometry-constrained molecules: One step further toward cyanide bridged wires. Inorg. Chem. 2009;48(23):11226-11235.
http://dx.doi.org/10.1021/ic901710x