Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The new compound [Ru(bpy)(tpm)NO](ClO4)3 [tpm = tris(1-pyrazolyl)methane; bpy = 2,2′-bipyridine] has been prepared in a stepwise procedure that involves the conversion of [Ru(bpy)(tpm)Cl]+ into the aqua and nitro intermediates, followed by acidification. The diamagnetic complex crystallizes to exhibit distorted octahedral geometry around the metal, with the Ru-N(O) bond length 1.774(12) Å and the RuNO angle 179.1(12)°, typical for a {RuNO}6 description. The [Ru(bpy)(tpm)NO]3+ ion (I) has been characterized by 1H NMR and IR spectroscopies (νNO = 1959 cm-1) and through density functional theory calculations. Intense electronic transitions in the 300-350-nm region are assigned through time-dependent (TD)DFT as intraligand π→π* for bpy and tpm. The dπ→π*(bpy) metal-to-ligand charge-transfer transitions appear at higher energies. Aqueous cyclic voltammetric studies show a reversible wave at 0.31 V (vs Ag/AgCl, 3 M Cl-), which shifts to 0.60 V in MeCN, along with the onset of a wave of an irreversible process at -0.2 V. The waves are assigned to the one- and two-electron reductions centered at the NO ligand, leading to species with {RuNO}7 and {RuNO}8 configurations, respectively. Controlled potential reduction of I in MeCN led to the [Ru(bpy)(tpm)NO] 2+ ion (II), revealing a significant downward shift of νNO to 1660 cm-1 as well as changes in the electronic absorption bands. II was also characterized by electron paramagnetic resonance, showing an anisotropic signal at 110 K that arises from an S = 1/2 electronic ground state; the g-matrix components and hyperfine coupling tensor resemble the behavior of related {RuNO}7 complexes. Both I and II were characterized through their main reactivity modes, electrophilic and nucleophilic, respectively. The addition of OH- into I generated the nitro complex, with kOH = 3.05 × 106 M-1 s-1 (25°C). This value is among the highest obtained for related nitrosyl complexes and correlates with ENO+/NO, the one-electron redox potential. Complex II is a robust species toward NO release, although a conversion to I was observed in the presence of O2. This reaction afforded a second-order rate law with k = 3.5 M-1 s-1 (25°C). The stabilization of the NO radical complex is attributed to the high positive charge of the precursor and to the geometrical and electronic structure as determined by the neutral tpm ligand. © 2006 American Chemical Society.

Registro:

Documento: Artículo
Título:New ruthenium nitrosyl complexes with tris(1-pyrazolyl)methane (tpm) and 2,2′-bipyridine (bpy) coligands. Structure, spectroscopy, and electrophilic and nucleophilic reactivities of bound nitrosyl
Autor:Videla, M.; Jacinto, J.S.; Baggio, R.; Garland, M.T.; Singh, P.; Kaim, W.; Slep, L.O.; Olabe, J.A.
Filiación:Department of Inorganic, Analytical and Physical Chemistry, CONICET, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
Department of Physics, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida Gral. Paz 1499, S. Martin B1650KNA, Argentina
Department of Physics, Universidad de Chile, CIMAT, Avenida Blanco Encalada 2008, Santiago, Chile
Institut fuer Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
Palabras clave:2,2' bipyridine; drug derivative; methane; nitrogen oxide; nitrosyl chloride; pyrazole derivative; ruthenium; tris(1 pyrazolyl)methane; tris(1-pyrazolyl)methane; article; chemistry; conformation; electrochemistry; electron spin resonance; X ray crystallography; 2,2'-Dipyridyl; Crystallography, X-Ray; Electrochemistry; Electron Spin Resonance Spectroscopy; Methane; Molecular Conformation; Nitrogen Oxides; Pyrazoles; Ruthenium
Año:2006
Volumen:45
Número:21
Página de inicio:8608
Página de fin:8617
DOI: http://dx.doi.org/10.1021/ic061062e
Título revista:Inorganic Chemistry
Título revista abreviado:Inorg. Chem.
ISSN:00201669
CODEN:INOCA
CAS:2,2' bipyridine, 366-18-7; methane, 74-82-8; nitrogen oxide, 11104-93-1; ruthenium, 7440-18-8; 2,2'-Dipyridyl, 366-18-7; Methane, 74-82-8; Nitrogen Oxides; nitrosyl chloride, 2696-92-6; Pyrazoles; Ruthenium, 7440-18-8; tris(1-pyrazolyl)methane
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00201669_v45_n21_p8608_Videla

Referencias:

  • (1996) Methods in Nitric Oxide Research, , Feelisch, M., Stamler, J. S., Eds.; Wiley: Chichester, U.K
  • Ignarro, J.L.E., (2000) Nitric Oxide, Biology and Pathobiology, , Academic Press: San Diego, CA
  • Butler, A.R., Megson, I.L., (2002) Chem. Rev., 102, pp. 1155-1165
  • Beckman, J.S., The Physiological and Pathological Chemistry of Nitric Oxide (1996) Nitric Oxide, Principles and Actions, , Lancaster, J., Ed.; Academic Press: San Diego, CA
  • Ford, P.C., Lorkovic, I.M., (2002) Chem. Rev., 102, pp. 993-1017
  • Ford, P.C., Laverman, L., Lorkovic, I., (2003) Adv. Inorg. Chem., 54, pp. 203-257
  • Lim, M.D., Lorkovic, I., Ford, P.C., (2005) J. Inorg. Biochem., 99, pp. 151-165
  • Ford, P.C., Laverman, L.E., (2005) Coord. Chem. Rev., 249, pp. 391-403
  • McCleverty, J.A., (2004) Chem. Rev., 104, pp. 403-418
  • Richter-Addo, G.B., Legzdins, P., (1992) Metal Nitrosyls, , Oxford University Press: New York
  • Olabe, J.A., Slep, L.D., Reactivity and Structure of Complexes of Small Molecules: Nitric and Nitrous Oxide (2004) Comprehensive Coordination Chemistry II, from Biology to Nanotechnology, 1, pp. 603-623. , McCleverty, J. A., Meyer, T. J., Eds.; Elsevier: Oxford, U.K
  • Enemark, J.H., Feltham, R.D., (1974) Coord. Chem. Rev., 13, pp. 339-406
  • Westcott, B.L., Enemark, J.H., Transition Metal Nitrosyls (1999) Inorganic Electronic Structure and Spectroscopy, 2, pp. 403-450. , Solomon, E. I., Lever, A. B. P., Eds.; Wiley: New York
  • Feltham, R.D., Enemark, J.H., (1981) Top. Inorg. Organomet. Stereochem., 12, p. 155
  • Bottomley, F., (1989) Reactions of Coordinated Ligands, 2. , Braterman, P. S., Ed.; Plenum Publishing Corp.: New York
  • Callahan, R.W., Meyer, T.J., (1977) Inorg. Chem., 16, pp. 574-581
  • Pipes, D.W., Meyer, T.J., (1984) Inorg. Chem., 23, pp. 2466-2472
  • Roncaroli, F., Ruggiero, M.E., Franco, D.W., Estiú, G.L., Olabe, J.A., (2002) Inorg. Chem., 41, pp. 5760-5769
  • Lee, C.M., Chen, C.H., Chen, H.W., Hsu, J.L., Lee, G.H., Liaw, W.F., (2005) Inorg. Chem., 44, pp. 6670-6679
  • Karidi, K., Garoufis, A., Tsipis, A., Hadjiliadis, N., Den Dulk, H., Reedijk, J., (2005) Dalton Trans., 7, pp. 1176-1187
  • Zampieri, R.C.L., Von Poelhsitz, G., Batista, A.A., Nascimento, O.R., Ellena, J., Castellano, E.E., (2002) J. Inorg. Biochem., 92, pp. 82-88
  • Serli, B., Zangrando, E., Iengo, E., Alessio, E., (2002) Inorg. Chim. Acta, 339, pp. 265-272
  • Nagao, H., Hirano, T., Tsuboya, N., Shiota, S., Mukaida, M., Oi, T., Yamasaki, M., (2002) Inorg. Chem., 41, pp. 6267-6273
  • Grapperhaus, C.A., Patra, A.K., Mashuta, M.S., (2002) Inorg. Chem., 41, pp. 1039-1041
  • Hadadzadeh, H., DeRosa, M.C., Yap, G.P.A., Rezvani, A.R., Crutchley, R.J., (2002) Inorg. Chem., 41, pp. 6521-6526
  • Batista, A.A., Queiroz, S.L., Healy, P.C., Bucley, R.W., Boyd, S.E., Berners-Price, S.J., Castellano, E.E., Ellena, J., (2001) Can. J. Chem., 79, pp. 1030-1035
  • Ray, M., Golombek, A.P., Hendrich, M.P., Yap, G.P.A., Liable-Sands, L.M., Rheingold, A.L., Borovik, A.S., (1999) Inorg. Chem., 38, pp. 3110-3115
  • Schweitzer, D., Ellison, J.J., Shoner, S.C., Lovell, S., Kovacs, J.A., (1996) J. Am. Chem. Soc., 118, pp. 10996-10997
  • Ooyama, D., Miura, Y., Kanazawa, Y., Howell, F.S., Nagao, N., Mukaida, M., Nagao, H., Tanaka, K., (1995) Inorg. Chim. Acta, 237, pp. 47-55. , Kitanaka
  • Coe, B.J., Chery, M., Beddoes, R.L., Hope, H., White, P.S., (1996) J. Chem. Soc., Dalton Trans., p. 3917
  • Togano, T., Kuroda, H., Nagao, N., Maekawa, Y., Nishimura, H., Howell, F.S., Mukaida, M., (1992) Inorg. Chim. Acta, 196, pp. 57-63
  • Szczepura, L.F., Muller, J.G., Bessel, C.A., See, R.F., Janik, T.S., Churchill, M.R., Takeuchi, K.J., (1992) Inorg. Chem., 31, pp. 859-869
  • Nagao, H., Nishimura, H., Funato, H., Ichikawa, Y., Howell, F.S., Mukaida, M., Kakihana, H., (1989) Inorg. Chem., 28, pp. 3955-3959
  • Zanichelli, P.G., Miotto, A.M., Estrela, H.F.G., Rocha Soares, F., Grassi-Kassisse, D.M., Spadari-Bratfisch, R.C., Castellano, E.E., Franco, D.W., (2004) J. Inorg. Biochem., 98, pp. 1921-1932
  • Lang, R.D., Davis, J.A., Lopez, L.G.F., Ferro, A.A., Vasconcellos, L.C.G., Franco, D.W., Tfouni, E., Clarke, M.J., (2000) Inorg. Chem., 39, pp. 2294-2300
  • Sauaia, M.G., Oliveira, F.D.S., Lima, R.G.'D., Cacciari, A.D.L., Tfouni, E., Santana Da Silva, R., (2005) Inorg. Chem. Commun., 8, pp. 347-349
  • Pitarch López, J., Heinemman, F.W., Prakash, R., Hess, B.A., Horner, O., Jeandey, C., Oddou, J.L., Grohmann, A., (2002) Chem. - Eur. J., 8, pp. 5709-5722
  • De Souza, V.R., De Costa Ferreira, A.M., Toma, H.E., (2003) Dalton. Trans., pp. 458-463
  • Patra, A.K., Rose, M.J., Murphy, K.A., Olmstead, M.M., Mascharak, P.K., (2004) Inorg. Chem., 43, pp. 4487-4495
  • Patra, A.K., Mascharak, P.K., (2003) Inorg. Chem., 42, pp. 7363-7365
  • Afshar, R.K., Patra, A.K., Bill, E., Olmstead, M.M., Mascharak, P.K., (2006) Inorg. Chem., 45, pp. 3774-3781
  • Sarkar, S., Sarkar, B., Chanda, N., Kar, S., Mobin, S.M., Fiedler, J., Kaim, W., Lahiri, G.K., (2005) Inorg. Chem., 44, pp. 6092-6099
  • Chanda, N., Paul, D., Kar, S., Mobin, S.M., Datta, A., Puranik, V.G., Rao, K.K., Lahiri, G.K., (2005) Inorg. Chem., 44, pp. 3499-3511
  • Chanda, N., Mobin, S.M., Puranik, V.G., Datta, A., Niemeyer, M., Lahiri, G.K., (2004) Inorg. Chem., 43, pp. 1056-1064
  • Mondal, B., Paul, H., Puranik, V.G., Lahiri, G.K., (2001) J. Chem. Soc., Dalton Trans., pp. 481-487
  • Pettinari, C., Santini, C., (2004) Polypyrazolylborate and Scorpionate Ligands, 1. , Elsevier: Oxford, U.K., Chapter 1.10
  • Bigmore, H.L., Lawrence, S.C., Mountford, P., Tradget, C.S., (2005) Dalton Trans., pp. 635-651
  • Astley, T., Gulbis, J.M., Hitchman, M.A., Tiekink, E.R.T., (1993) J. Chem. Soc., Dalton Trans., pp. 509-515
  • Trofimenko, S., (1993) Chem. Rev., 93, pp. 943-980
  • Trofimenko, S., (1970) J. Am. Chem. Soc., 92, pp. 5118-5126
  • Serres, R.G., Grapperhaus, C.A., Bothe, E., Bill, E., Weyhermuller, T., Neese, F., Wieghardt, K., (2004) J. Am. Chem. Soc., 126, pp. 5138-5153
  • Wanat, A., Schneppensieper, T., Stochel, G., Van Eldik, R., Bill, E., Wieghardt, K., (2002) Inorg. Chem., 41, pp. 4-10
  • Li, M., Bonnet, D., Bill, E., Neese, F., Weyhermuller, T., Blum, N., Sellmann, D., Wieghardt, K., (2002) Inorg. Chem., 41, pp. 3444-3456
  • Brown, C.A., Pavlosky, M.A., Westre, T.E., Zhang, Y., Hedman, B., Hodgson, K.O., Solomon, E.I., (1995) J. Am. Chem. Soc., 117, pp. 715-732
  • Westre, T.E., Di Cicco, A., Filipponi, A., Natoli, C.R., Hedman, B., Solomon, E.I., Hodgson, K.O., (1994) J. Am. Chem. Soc., 116, pp. 6757-6768
  • Sellmann, D., Blum, N., Heinemann, F.W., Hess, B.A., (2001) Chem. - Eur. J., 7, pp. 1874-1879
  • Wanner, M., Scheiring, T., Kaim, W., Slep, L.D., Baraldo, L.M., Olabe, J.A., Zalis, S., Baerends, E.J., (2001) Inorg. Chem., 40, pp. 5704-5707
  • Singh, P., Sarkar, B., Sieger, M., Niemeyer, M., Fiedler, J., Zalis, S., Kaim, W., (2006) Inorg. Chem., 45, pp. 4602-4609
  • Hückel, W., Bretschneider, H., (1937) Chem. Ber., 9, pp. 2024-2026
  • Reger, D.L., Grattan, T.C., Brown, K.J., Little, C.A., Lamba, J.J.S., Rheingold, A.L., Sommer, R.D., (2000) J. Organomet. Chem., 607, pp. 120-128
  • Llobet, A., Doppelt, P., Meyer, T.J., (1988) Inorg. Chem., 27, pp. 514-520
  • Frantz, S., Sarkar, B., Sieger, M., Kaim, W., Roncaroli, F., Olabe, J.A., Zalis, S., (2004) Eur. J. Inorg. Chem., pp. 2902-2907
  • (2001) SMART. Data Collection Software, Version 5.625, , Bruker Analytical X-ray Instruments Inc.: Madison, WI
  • (2001) SAINT. Data Reduction Software, Version 6.28A, , Bruker Analytical X-ray Instruments Inc.: Madison, WI
  • Sheldrick, G.M., (1996) SADABS: A Program for Absorption Correction, , Universität Göttingen: Göttingen, Germany
  • Sheldrick, G.M., (1997) SHELXS-97 and SHELXL-97: Programs for Structure Resolution and Refinement, , Universität Göttingen: Göttingen, Germany
  • Li, J., Noodleman, L., Case, D.A., Electronic Structure Calculations with Applications to Transition Metal Complexes (1999) Inorganic Electronic Structure and Spectroscopy; Solomon, 1, pp. 661-724. , E. I., Lever, A. B. P., Eds.; Wiley: New York
  • (2004) Gaussian 03, Revision D.01, , Gaussian, Inc.: Wallingford, CT
  • Nakamoto, K., (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Ed., , Wiley: New York
  • Llobet, A., (1994) Inorg. Chim. Acta, 221, pp. 125-131
  • Fiedler, J., (1993) Collect. Czech. Chem. Commun., 58, pp. 461-473
  • Baumann, F., Kaim, W., Baraldo, L.M., Slep, L.D., Olabe, J.A., Fiedler, J., (1999) Inorg. Chim. Acta, 285, pp. 129-133
  • Olabe, J.A., (2004) Adv. Inorg. Chem., 55, pp. 61-126
  • Baraldo, L.M., Bessega, M.S., Rigotti, G.E., Olabe, J.A., (1994) Inorg. Chem., 33, pp. 5890-5896
  • Cheney, R.P., Simic, M.G., Hoffman, M.Z., Taub, I.A., Asmus, K.D., (1977) Inorg. Chem., 16, pp. 2187-2192
  • Armor, N.J., Hoffman, M.Z., (1975) Inorg. Chem., 14, pp. 444-446
  • Hoshino, M., Laverman, L., Ford, P.C., (1999) Coord. Chem. Rev., 187, pp. 75-102
  • Andersen, H.J., Skibsted, L.H., (1992) J. Agric. Food Chem., 40, pp. 1741-1750
  • Patra, A.K., Rowland, J.M., Marlin, D.S., Bill, E., Olmstead, M.M., Mascharak, P.K., (2003) Inorg. Chem., 42, pp. 6812-6823
  • Cheng, L., Powell, D.R., Khan, M.A., Richter Addo, G.B., (2000) Chem. Commun., p. 2301
  • Harrop, T.C., Olmstead, M.M., Mascharak, P.K., (2005) Inorg. Chem., 44, pp. 6918-6920
  • Goldstein, S., Czapski, G., (1995) J. Am. Chem. Soc., 117, pp. 12078-12084
  • Bohle, D.S., (1998) Curr. Opin. Chem. Biol., 2, pp. 194-200
  • Videla, M., Roncaroli, F., Jacinto, J.S., Slep, L.D., Olabe, J.A., to be submitted

Citas:

---------- APA ----------
Videla, M., Jacinto, J.S., Baggio, R., Garland, M.T., Singh, P., Kaim, W., Slep, L.O.,..., Olabe, J.A. (2006) . New ruthenium nitrosyl complexes with tris(1-pyrazolyl)methane (tpm) and 2,2′-bipyridine (bpy) coligands. Structure, spectroscopy, and electrophilic and nucleophilic reactivities of bound nitrosyl. Inorganic Chemistry, 45(21), 8608-8617.
http://dx.doi.org/10.1021/ic061062e
---------- CHICAGO ----------
Videla, M., Jacinto, J.S., Baggio, R., Garland, M.T., Singh, P., Kaim, W., et al. "New ruthenium nitrosyl complexes with tris(1-pyrazolyl)methane (tpm) and 2,2′-bipyridine (bpy) coligands. Structure, spectroscopy, and electrophilic and nucleophilic reactivities of bound nitrosyl" . Inorganic Chemistry 45, no. 21 (2006) : 8608-8617.
http://dx.doi.org/10.1021/ic061062e
---------- MLA ----------
Videla, M., Jacinto, J.S., Baggio, R., Garland, M.T., Singh, P., Kaim, W., et al. "New ruthenium nitrosyl complexes with tris(1-pyrazolyl)methane (tpm) and 2,2′-bipyridine (bpy) coligands. Structure, spectroscopy, and electrophilic and nucleophilic reactivities of bound nitrosyl" . Inorganic Chemistry, vol. 45, no. 21, 2006, pp. 8608-8617.
http://dx.doi.org/10.1021/ic061062e
---------- VANCOUVER ----------
Videla, M., Jacinto, J.S., Baggio, R., Garland, M.T., Singh, P., Kaim, W., et al. New ruthenium nitrosyl complexes with tris(1-pyrazolyl)methane (tpm) and 2,2′-bipyridine (bpy) coligands. Structure, spectroscopy, and electrophilic and nucleophilic reactivities of bound nitrosyl. Inorg. Chem. 2006;45(21):8608-8617.
http://dx.doi.org/10.1021/ic061062e