Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The kinetics and mechanism of the thermal decomposition of the one-electron reduction product of [Fe(CN)5NO]2- (nitroprusside ion, NP) have been studied by using UV-vis, IR, and EPR spectroscopy and mass-spectrometric and electrochemical techniques in the pH range of 4-10. The reduction product contains an equilibrium mixture of [Fe(CN)4NO] 2- and [Fe(CN)5NO]3- ions. The first predominates at pH <8 and is formed by the rapid release of trans-cyanide from [Fe(CN)5NO]3-, which, in turn, is the main component at pH >9-10. Both nitrosyl complexes decay by first-order processes with rate constants around 10-5 s-1 (pH 6-10) related to the dissociation of NO. The decomposition is enhanced at pH 4 by 2 orders of magnitude with protons (and also metal ions) favoring the release of cyanides from the [Fe(CN)4NO]2- ions and the ensuing rapid delivery of NO. At pH 7, an EPR-silent intermediate I1 is detected (VNO, 1695 and 1740 cm-1) and assigned to the trans-[FeII(CN) 4(NO)2]2- ion, an {Fe-(NO)2} 8 species. At pH 6-8, I1 induces a disproportionation process with formation of N2O and the regeneration of nitroprusside in a 1:2 molar ratio. At lower pHs, I1 leads, competitively, to a second paramagnetic (S = 1/2) dinitrosyl intermediate I2, [Fe(CN)2(NO)2]1-, a new member of a series of four-coordinate {Fe(L)2(NO)2} complexes (L = thiolates, imidazole, etc.), described as {Fe(NO)2}9. Other decomposition products are hexacyanoferrate(II) or free cyanide, depending on the pH, and precipitates of the Prussian-Blue type. This study throws light on the conditions favoring rapid release of NO, to promote vasodilatory effects upon NP injection, and describes new processes related to dinitrosyl formation and NO disproportionation, which are also relevant to the diverse biological processes associated with NO and N2O processing. © 2005 American Chemical Society.

Registro:

Documento: Artículo
Título:Release of NO from reduced nitroprusside ion. Iron-dinitrosyl formation and NO-disproportionation reactions
Autor:Roncaroli, F.; Van Eldik, R.; Olabe, J.A.
Filiación:Dept. Inorg., Analyt. Phys. Chem., Fac. of Exact and Natural Sciences, University of Buenos Aires, C1428EHA Buenos Aires, Argentina
Institute for Inorganic Chemistry, University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany
Palabras clave:cyanide; ferric ferrocyanide; imidazole; iron derivative; metal ion; nitric oxide; nitroprusside sodium; proton; article; chemical reaction; decomposition; electrochemistry; electron spin resonance; infrared spectroscopy; kinetics; magnetism; mass spectrometry; pH measurement; reduction; ultraviolet spectroscopy; vasodilatation; Cations; Cyanides; Ferric Compounds; Ferrous Compounds; Hydrogen-Ion Concentration; Imidazoles; Ions; Iron; Kinetics; Nitrogen Oxides; Nitroprusside; Oxidation-Reduction; Stereoisomerism; Sulfhydryl Compounds
Año:2005
Volumen:44
Número:8
Página de inicio:2781
Página de fin:2790
DOI: http://dx.doi.org/10.1021/ic050070c
Título revista:Inorganic Chemistry
Título revista abreviado:Inorg. Chem.
ISSN:00201669
CODEN:INOCA
CAS:cyanide, 57-12-5; ferric ferrocyanide, 12240-15-2, 14038-43-8, 14433-93-3, 14460-02-7; imidazole, 1467-16-9, 288-32-4; nitric oxide, 10102-43-9; nitroprusside sodium, 14402-89-2, 15078-28-1; proton, 12408-02-5, 12586-59-3; Cations; Cyanides; Ferric Compounds; Ferrous Compounds; imidazole, 288-32-4; Imidazoles; Ions; Iron, 7439-89-6; Nitrogen Oxides; Nitroprusside, 15078-28-1; Sulfhydryl Compounds
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00201669_v44_n8_p2781_Roncaroli

Referencias:

  • Butler, A.R., Megson, I.L., (2002) Chem. Rev., 102, pp. 1155-1165
  • Wang, P.G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T., Janczuk, A., (2002) J. Chem. Rev., 102, pp. 1091-1134
  • Clarke, M.J., Gaul, J.B., (1993) Struct. Bonding (Berlin), 81, pp. 147-181
  • Butler, A.R., Glidewell, C., (1987) Chem. Soc. Rev., 16, pp. 361-380
  • Enemark, J.H., Feltham, R.D., (1974) Coord. Chem. Rev., 13, pp. 339-406
  • Swinehart, J.H., (1967) Coord. Chem. Rev., 2, pp. 385-402
  • Westcott, B.L., Enemark, J.H., (1999) Inorganic Electronic Structure and Spectroscopy, 2, pp. 403-450. , Solomon, E. I., Lever, A. B. P., Eds.; Wiley-Interscience: New York, Chapter 7
  • Wolfe, S.K., Swinehart, J.H., (1975) Inorg. Chem., 14, pp. 1049-1053
  • Bottomley, F., (1989) Reactions of Coordinated Ligands, 2, pp. 115-222. , Braterman, P. S., Ed.; Plenum Press: New York
  • Olabe, J.A., (2004) Adv. Inorg. Chem., 55, pp. 61-126
  • Masek, J., Maslova, E., (1974) Collect. Czech. Chem. Comm., 39, pp. 2141-2160
  • Ballou, D.P., Zhao, Y., Brandish, P.E., Marletta, M.A., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 12097-12101
  • Butler, A.R., Calsy-Harrison, A.M., Glidewell, C., Sorensen, P.E., (1988) Polyhedron, 7, pp. 1197-1202
  • Cheney, R.P., Simic, M.G., Hoffman, M.Z., Taub, I.A., Asmus, K.D., (1977) Inorg. Chem., 16, pp. 2187-2192
  • Nast, R., Schmidt, J., (1969) Angew. Chem., Int. Ed. Engl., 8, p. 383
  • Van Voorst, J.D.W., Hemmerich, P., (1966) J. Chem. Phys., 45, pp. 3914-3918
  • Schmidt, J., Kühr, H., Dorn, W.L., Kopf, J., (1974) Inorg. Nucl. Chem. Lett., 10, pp. 55-61
  • Glidewell, C., Johnson, I.L., (1987) Inorg. Chim. Acta, 132, pp. 145-147
  • Butler, A.R., Glidewell, C., Johnson, I.L., McIntosh, A.S., (1987) Inorg. Chim. Acta, 138, pp. 159-162
  • Shafer, P.R., Wilcox, D.E., Kruszyna, H., Kruszyna, R., Smith, R.P., (1989) Toxicol. Appl. Pharmacol., 99, pp. 1-10
  • Wilcox, D.E., Kruszyna, H., Kruszyna, R., Smith, R.P., (1990) Chem. Res. Toxicol., 3, pp. 71-76
  • Bates, J.N., Baker, M.T., Guerra Jr., R., Harrison, D.G., (1991) Biochem. Pharmacol., 42, pp. S157-S165
  • Kruszyna, H., Kruszyna, R., Rochelle, L.G., Smith, R.P., Wilcox, D.E., (1993) Biochem. Pharmacol., 46, pp. 95-102
  • Rochelle, L.G., Kruszyna, H., Kruszyna, R., Barchowsky, A., Wilcox, D.E., Smith, R.P., (1994) Toxicol. Appl. Pharmacol., 128, pp. 123-128
  • Roncaroli, F., Olabe, J.A., Van Eldik, R., (2003) Inorg. Chem., 42, pp. 4179-4189
  • note; Morando, P.J., Borghi, E.B., Schteingart, L.M., Blesa, M.A., (1981) J. Chem. Soc., Dalton Trans., pp. 435-440
  • Ford, P.C., Lorkovic, I.M., (2002) Chem. Rev., 102, pp. 993-1018
  • Ford, P.C., Laverman, L.E., Lorkovic, I.M., (2003) Adv. Inorg. Chem., 54, pp. 203-257
  • Ueno, T., Suzuki, Y., Fujii, S., Vanin, A.F., Yoshimura, T., (2002) Biochem. Pharmacol., 63, pp. 485-493
  • Vogel, A., (1978) A Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, 4th Ed., , Longman Inc.: New York
  • Schmidt, H.H.H.W., Kelm, M., (1996) Methods in Nitric Oxide Research, , Feelisch, M.; Stamler, J. S., Eds.; Wiley: Chichester, UK, Part VII, Chapter 33
  • Szacilowski, K., Stochel, G., Stasicka, Z., Kisch, H., (1997) New J. Chem., 21, pp. 893-902
  • Roncaroli, F., Olabe, J.A., Van Eldik, R., (2002) Inorg. Chem., 41, pp. 5417-5425
  • Sharpe, A.G., (1976) The Chemistry of Cyano Complexes of the Transition Metals, , Academic Press: London
  • Binstead, R.A., Zuberbulher, A.D., (1993) SPECFIT, , Spectrum Software Associates: Chapel Hill, NC
  • Kenney, D.J., Flynn, T.P., Gallini, J.B., (1961) J. Inorg. Nucl. Chem., 20, p. 75
  • Chacón Villalba, M.E., Varetti, E.L., Aymonino, P.J., (1997) Vib. Spectrosc., 14, pp. 275-286
  • Gutiérrez, M.M., Amorebieta, V.T., Estiú, G.L., Olabe, J.A., (2002) J. Am. Chem. Soc., 124, pp. 10307-10319
  • Schwane, J.D., Ashby, M.T., (2002) J. Am. Chem. Soc., 124, pp. 6822-6823
  • Manoharan, P.T., Gray, H.B., (1966) Inorg. Chem., 5, pp. 823-839
  • Gray, H.B., Beach, N.A., (1963) J. Am. Chem. Soc., 85, pp. 2922-2926
  • Sampath, V., Rousseau, D.L., Caughey, W.S., (1996) Methods in Nitric Oxide Research, , Feelisch, M., Stamler, J. S., Eds.; Wiley: Chichester, U.K., Part VI, Chapter 29
  • note; Lee, M., Arosio, P., Cozzi, A., Chasteen, N.D., (1994) Biochemistry, 33, pp. 3679-3687
  • Vanin, A.F., Serezhenkov, V.A., Mikoyan, V.D., Genkin, M.V., (1998) Nitric Oxide, 2, pp. 224-234
  • Reginato, N., McCrory, C.T.C., Pervitsky, D., Li, L., (1999) J. Am. Chem. Soc., 121, pp. 10217-10218
  • Butler, A.R., Glidewell, C., Hyde, A.R., Walton, J.C., (1985) Polyhedron, 4, pp. 797-809
  • Costanzo, S., Menage, S., Purrello, R., Bonomo, R., Fontecave, M., (2001) Inorg. Chim. Acta, 318, pp. 1-7
  • Burlamaschi, L., Martín, G., Tiezzi, E., (1969) Inorg. Chem., 8, pp. 2021-2025
  • McDonald, C.C., Phillips, W.D., Mower, H.F., (1965) J. Am. Chem. Soc., 87, pp. 3319-3326
  • Ueno, T., Yoshimura, T., (2000) Jpn. J. Pharmacol., 82, pp. 95-101
  • Foster, M.W., Cowan, J.A., (1999) J. Am. Chem. Soc., 121, pp. 4093-4100
  • Bryar, T.R., Eaton, D.R., (1992) Can. J. Chem., 70, pp. 1917-1926
  • note; Olabe, J.A., Zerga, H.O., (1983) Inorg. Chem., 22, pp. 4156-4158
  • Lorkovic, I., Ford, P.C., (2000) J. Am. Chem. Soc., 122, pp. 6516-6517
  • Patterson, J.C., Lorkovic, I.M., Ford, P.C., (2003) Inorg. Chem., 42, pp. 4902-4908
  • Conradie, J., Wondimagegn, T., Ghosh, A., (2003) J. Am. Chem. Soc., 125, pp. 4968-4969
  • Franz, K.J., Lippard, S.J., (2000) Inorg. Chem., 39, pp. 3722-3723
  • Shafirovich, V., Lymar, S.V., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 7340-7345
  • Lin, R., Farmer, P.J., (2001) J. Am. Chem. Soc., 123, pp. 1143-1150
  • Yoshimura, T., (1984) Inorg. Chim. Acta, 83, pp. 17-21
  • Settin, M.F., Fanning, J.C., (1988) Inorg. Chem., 27, pp. 1431-1435
  • Ellison, M.K., Schulz, C.E., Scheidt, W.R., (1999) Inorg. Chem., 38, pp. 100-108
  • Lorkovic, I.M., Ford, P.C., (1999) Inorg. Chem., 38, pp. 1467-1473
  • Lorkovic, I.M., Ford, P.C., (2000) Inorg. Chem., 39, pp. 632-633
  • Lim, M.D., Lorkovic, I.M., Wedeking, K., Zanella, A.W., Works, C.F., Massick, S.M., Ford, P.C., (2002) J. Am. Chem. Soc., 124, pp. 9737-9743
  • Kurtikyan, T.S., Martirosyan, G.G., Lorkovic, I.M., Ford, P.C., (2002) J. Am. Chem. Soc., 124, pp. 10124-10129
  • Olson, L.W., Schaeper, D., Lancon, D., Kadish, K.M., (1982) J. Am. Chem. Soc., 104, pp. 2042-2044
  • Baraldo, L.M., Forlano, P., Parise, A.R., Slep, L.D., Olabe, J.A., (2001) Coord. Chem. Rev., 219-221, pp. 881-921
  • Kowaluk, E.A., Seth, P., Fung, H.L., (1992) J. Pharmacol. Exp. Ther., 262, pp. 916-922
  • Vanin, A.F., Stukan, R.A., Mabuchkina, E.B., (1996) Biochim. Biophys. Acta, 1295, p. 5
  • Wasser, I.M., De Vries, S., Moënne-Loccoz, P., Schröder, I., Karlin, K.D., (2002) Chem. Rev., 102, pp. 1201-1234
  • Averill, B.A., (1996) Chem. Rev., 96, pp. 2951-2964
  • D'Autréaux, B., Horner, O., Oddou, J.L., Jeandey, C., Gambarelli, S., Berthomieu, C., Latour, J.M., Michaud-Soret, I., (2004) J. Am. Chem. Soc., 126, pp. 6005-6016

Citas:

---------- APA ----------
Roncaroli, F., Van Eldik, R. & Olabe, J.A. (2005) . Release of NO from reduced nitroprusside ion. Iron-dinitrosyl formation and NO-disproportionation reactions. Inorganic Chemistry, 44(8), 2781-2790.
http://dx.doi.org/10.1021/ic050070c
---------- CHICAGO ----------
Roncaroli, F., Van Eldik, R., Olabe, J.A. "Release of NO from reduced nitroprusside ion. Iron-dinitrosyl formation and NO-disproportionation reactions" . Inorganic Chemistry 44, no. 8 (2005) : 2781-2790.
http://dx.doi.org/10.1021/ic050070c
---------- MLA ----------
Roncaroli, F., Van Eldik, R., Olabe, J.A. "Release of NO from reduced nitroprusside ion. Iron-dinitrosyl formation and NO-disproportionation reactions" . Inorganic Chemistry, vol. 44, no. 8, 2005, pp. 2781-2790.
http://dx.doi.org/10.1021/ic050070c
---------- VANCOUVER ----------
Roncaroli, F., Van Eldik, R., Olabe, J.A. Release of NO from reduced nitroprusside ion. Iron-dinitrosyl formation and NO-disproportionation reactions. Inorg. Chem. 2005;44(8):2781-2790.
http://dx.doi.org/10.1021/ic050070c