Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

57Fe electric and magnetic hyperfine parameters were calculated for a series of 10 iron model complexes, covering a wide range of oxidation and spin states. Employing the B3LYP hybrid method, results from nonrelativistic density functional theory (DFT) and quasi-relativistic DFT within the zero-order regular approximation (ZORA) were compared. Electron densities at the iron nuclei were calculated and correlated with experimental isomer shifts. It was shown that the fit parameters do not depend on a specific training set of iron complexes and are, therefore, more universal than might be expected. The nonrelativistic and quasi-relativistic electron densities gave fit parameters of similar quality; the ZORA densities are only shifted by a factor of 1.32, upward in the direction of the four-component Dirac-Fock value. From a correlation of calculated electric field gradients and experimental quadrupole splittings, the value of the 57Fe nuclear quadrupole moment was redetermined to a value of 0.16 barn, in good agreement with other studies. The ZORA approach gave no additional improvement of the calculated quadrupole splittings in comparison to the nonrelativistic approach. The comparison of the calculated and measured 57Fe isotropic hyperfine coupling constants (hfcc's) revealed that both the ZORA approach and the inclusion of spin-orbit contributions lead to better agreement between theory and experiment in comparison to the nonrelativistic results. For all iron complexes with small spin-orbit contributions (high-spin ferric and ferryl systems), a distinct underestimation of the isotropic hfcc's was found. Scaling factors of 1.81 (nonrelativistic DFT) and 1.69 (ZORA) are suggested. The calculated 57Fe isotropic hfcc's of the remaining model systems (low-spin ferric and high-spin ferrous systems) contain 10-50% second-order contributions and were found to be in reasonable agreement with the experimental results. This is assumed to be the consequence of error cancellation because g-tensor calculations for these systems are of poor quality with the existing DFT approaches. Excellent agreement between theory and experiment was found for the 57Fe anisotropic hfcc's. Finally, all of the obtained fit parameters were used for an application study of the [Fe(H2O)6] 3+ ion. The calculated spectroscopic data are in good agreement with the Mössbauer and electron paramagnetic resonance results discussed in detail in a forthcoming paper. © 2005 American Chemical Society.

Registro:

Documento: Artículo
Título:Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe mössbauer spectra
Autor:Sinnecker, S.; Slep, L.D.; Bill, E.; Neese, F.
Filiación:Max-Planck-Inst. F Bioanorg. Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
Depto. Quim. Inorg., Anal./Quim. F., Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:ferric ion; iron 57; iron complex; acceleration; anisotropy; article; calculation; correlation analysis; density; density functional theory; electric field; electric potential; electron spin resonance; hybrid; hypothesis; isomer; magnetism; measurement; Mossbauer spectroscopy; oxidation; parameter; prediction; technique; zero order regular approximation
Año:2005
Volumen:44
Número:7
Página de inicio:2245
Página de fin:2254
DOI: http://dx.doi.org/10.1021/ic048609e
Título revista:Inorganic Chemistry
Título revista abreviado:Inorg. Chem.
ISSN:00201669
CODEN:INOCA
CAS:ferric ion, 20074-52-6; iron 57, 14762-69-7
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00201669_v44_n7_p2245_Sinnecker

Referencias:

  • Gütlich, P., Link, R., Trautwein, A., (1978) Mössbauer Spectroscopy and Transition Metal Chemistry, , Springer-Verlag: Heidelberg, Germany
  • Gonser, U., (1975) Mössbauer Spectroscopy, pp. 1-51. , Gonser, U., Ed.; Springer-Verlag: Berlin
  • Weil, J.A., Bolton, J.R., Wertz, J.E., (1994) Electron Paramagnetic Resonance - Elementary Theory and Practical Applications, , Wiley: New York
  • Schweiger, A., Jeschke, G., (2001) Principles of Pulse Electron Paramagnetic Resonance, , Oxford University Press: Oxford, U.K
  • McWeeny, R., (1970) Spins in Chemistry, , Academic Press: New York
  • Neese, F., Solomon, E.I., (2003) Magnetism: Molecules to Materials, pp. 345-466. , Miller, J. S., Drillon, M., Eds. Wiley VCH: Weinheim, Germany
  • Gütlich, P., (1975) Mössbauer Spectroscopy, pp. 53-96. , Gonser, U., Ed.; Springer-Verlag: Berlin
  • Vrajmasu, V.V., Bominaar, E.L., Meyer, J., Miinck, E., (2002) Inorg. Chem., 41, pp. 6358-6371
  • Johnson, C.E., (1975) Mössbauer Spectroscopy, pp. 139-166. , Gonser, U., Ed. Springer-Verlag: Berlin
  • Han, W.G., Lovell, T., Liu, T.Q., Noodleman, L., (2004) Inorg. Chem., 43, pp. 613-621
  • Lovell, T., Liu, T.Q., Case, D.A., Noodleman, L., (2003) J. Am. Chem. Soc., 125, pp. 8377-8383
  • Zhang, Y., Mao, J.H., Oldfield, E., (2002) J. Am. Chem. Soc., 124, pp. 7829-7839
  • Neese, F., (2002) Inorg. Chim. Acta, 337, pp. 181-192
  • Neese, F., (2003) Curr. Opin. Chem. Biol., 7, pp. 125-135
  • Koch, W., Holthausen, M.C., (2000) A Chemist's Guide to Density Functional Theory, , Wiley-VCH: Weinheim, Germany
  • Kohn, W., Sham, L.J., (1965) Phys. Rev., 140, p. 1133
  • Hohenberg, P., Kohn, W., (1964) Phys. Rev. B: Condens. Matter, 136, p. 864
  • Van Lenthe, E., Baerends, E.J., Snijders, J.G., (1993) J. Chem. Phys., 99, pp. 4597-4610
  • Van Lenthe, E., Baerends, E.J., Snijders, J.G., (1994) J. Chem. Phys., 101, pp. 9783-9792
  • Van Lenthe, E., Van Leeuwen, R., Baerends, E.J., Snijders, J.G., (1996) Int. J. Quantum Chem., 57, pp. 281-293
  • Van Lenthe, E., Van Der Avoird, A., Wormer, P.E.S., (1998) J. Chem. Phys., 108, pp. 4783-4796
  • Belanzoni, P., Van Lenthe, E., Baerends, E.J., (2001) J. Chem. Phys., 114, pp. 4421-4433
  • Van Wüllen, C., (1998) J. Chem. Phys., 109, pp. 392-399
  • Schwerdtfeger, P., Pernpointner, M., Nazarewicz, W., (2004) Calculation of NMR and EPR Parameters. Theory and Applications, pp. 279-291. , Kaupp, M., Bühl, M., Malkin, V. G., Eds.; Wiley-VCH: Weinheim, Germany
  • Bill, E., Mienert, B., Sinnecker, S., Neese, F., Manuscript in preparation; Bominaar, E.L., Ding, X.Q., Gismelseed, A., Bill, E., Winkler, H., Trautwein, A.X., Nasri, H., Weiss, R., (1992) Inorg. Chem., 31, pp. 1845-1854
  • Sanakis, Y., Power, P.P., Stubna, A., Münck, E., (2002) Inorg. Chem., 41, pp. 2690-2696
  • MacDonnell, F.M., Ruhlandtsenge, K., Ellison, J.J., Holm, R.H., Power, P.P., (1995) Inorg. Chem., 34, pp. 1815-1822
  • Meyer, K., Bill, E., Mienert, B., Weyhermüller, T., Wieghardt, K., (1999) J. Am. Chem. Soc., 121, pp. 4859-4876
  • Safo, M.K., Gupta, G.P., Walker, F.A., Scheidt, W.R., (1991) J. Am. Chem. Soc., 113, pp. 5497-5510
  • Kostka, K.L., Fox, B.G., Hendrich, M.P., Collins, T.J., Rickard, C.E.F., Wright, L.J., Münck, E., (1993) J. Am. Chem. Soc., 115, pp. 6746-6757
  • Burstyn, J.N., Roe, J.A., Miksztal, A.R., Shaevitz, B.A., Lang, G., Valentine, J.S., (1988) J. Am. Chem. Soc., 110, pp. 1382-1388
  • Rohde, J.U., In, J.H., Lim, M.H., Brennessel, W.W., Bukowski, M.R., Stubna, A., Münck, E., Que, L., (2003) Science, 299, pp. 1037-1039
  • Mandon, D., Weiss, R., Jayaraj, K., Gold, A., Terner, J., Bill, E., Trautwein, A.X., (1992) Inorg. Chem., 31, pp. 4404-4409
  • Liu, T.Q., Lovell, T., Han, W.G., Noodleman, L., (2003) Inorg. Chem., 42, pp. 5244-5251
  • Serres, R.G., Grapperhaus, C.A., Bothe, E., Bill, E., Weyhermüller, T., Neese, F., Wieghardt, K., (2004) J. Am. Chem. Soc., 126, pp. 5138-5153
  • Fowler, P.W., Lazzeretti, P., Steiner, E., Zanasi, R., (1989) Chem. Phys., 133, pp. 221-235
  • Van Lenthe, E., Jan Baerends, E., (2000) J. Chem. Phys., 112, pp. 8279-8292
  • Neese, F., (2003) J. Chem. Phys., 118, pp. 3939-3948
  • Becke, A.D., (1988) Phys. Rev. A: At., Mol., Opt. Phys., 38, pp. 3098-3100
  • Perdew, J.P., (1986) Phys. Rev. B: Condens. Matter, 34, p. 7406
  • Perdew, J.P., (1986) Phys. Rev. B: Condens. Matter, 33, pp. 8822-8824
  • Schäfer, A., Horn, H., Ahlrichs, R., (1992) J. Chem. Phys., 97, pp. 2571-2577
  • Schäfer, A., Huber, C., Ahlrichs, R., (1994) J. Chem. Phys., 100, pp. 5829-5835
  • Becke, A.D., (1993) J. Chem. Phys., 98, pp. 5648-5652
  • Lee, C.T., Yang, W.T., Parr, R.G., (1988) Phys. Rev. B: Condens. Matter, 37, pp. 785-789
  • Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., (1994) J. Phys. Chem., 98, pp. 11623-11627
  • Eichkorn, K., Weigend, F., Treutier, O., Ahlrichs, R., (1997) Theor. Chem. Acc., 97, pp. 119-124
  • Eichkorn, K., Treutier, O., Ohm, H., Häser, M., Ahlrichs, R., (1995) Chem. Phys. Lett., 240, pp. 283-289
  • http://www.turbomole.com; Koseki, S., Schmidt, M.W., Gordon, M.S., (1992) J. Phys. Chem., 96, pp. 10768-10772
  • Koseki, S., Gordon, M.S., Schmidt, M.W., Matsunaga, N., (1995) J. Phys. Chem., 99, pp. 12764-12772
  • Koseki, S., Schmidt, M.W., Gordon, M.S., (1998) J. Phys. Chem. A, 102, pp. 10430-10435
  • Neese, F., (2004) ORCA - An Ab Initio, Density Functional and Semiempirical Program Package, Version 2.3, , Max-Planck-Institut für Bioanorganische Chemie: Mülheim an der Ruhr, Germany
  • note; Trautwein, A., Harris, F.E., Freeman, A.J., Desclaux, J.P., (1975) Phys. Rev. B: Condens. Matter, 11, pp. 4101-4105
  • Desclaux, J.P., (1975) Comput. Phys. Commun., 9, pp. 31-45
  • Mann, J.B., (1969) J. Chem. Phys., 51, pp. 841-842
  • Zhang, Y., Oldfield, E., (2003) J. Phys. Chem. B, 107, pp. 7180-7188
  • Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Weinhold, F., (2001) NBO 5.0, , http://www.chem.wisc.edu/~nbo5, Theoretical Chemistry Institute: University of Wisconsin, Madison, WI
  • Martinez-Pinedo, G., Schwerdtfeger, P., Caurier, E., Langanke, K., Nazarewicz, W., Söhnel, T., (2001) Phys. Rev. Lett., 8706, p. 062701
  • Zhang, Y., Gossman, W., Oldfield, E., (2003) J. Am. Chem. Soc., 125, pp. 16387-16396
  • Zhi, Z., Guenzburger, D., Ellis, D.E., (2004) J. THEOCHEM, 678, pp. 145-156
  • Zhang, Y., Oldfield, E., (2003) J. Phys. Chem. A, 107, pp. 4147-4150
  • Dufek, P., Blaha, P., Schwarz, K., (1995) Phys. Rev. Lett., 75, pp. 3545-3548
  • Lauer, S., Marathe, V.R., Trautwein, A., (1979) Phys. Rev. A: At., Mol., Opt. Phys., 19, pp. 1852-1861
  • Munzarová, M.L., Kaupp, M., (1999) J. Phys. Chem. A, 103, pp. 9966-9983
  • Sinnecker, S., Neese, F., Noodleman, L., Lubitz, W., (2004) J. Am. Chem. Soc., 126, pp. 2613-2622
  • Arbuznikov, A.V., Vaara, J., Kaupp, M., (2004) J. Chem. Phys., 120, pp. 2127-2139
  • Benda, R., Schunemann, V., Trautwein, A.X., Cai, S., Polam, J.R., Watson, C.T., Shokhireva, T.K., Walker, F.A.J., (2003) Biol. Inorg. Chem., 8, pp. 787-801
  • Van Lenthe, E., Van Der Avoird, A., Hagen, W.R., Reijerse, E.J., (2000) J. Phys. Chem. A, 104, pp. 2070-2077
  • Smith, D.M.A., Dupuis, M., Vorpagel, E.R., Straatsma, T.P., (2003) J. Am. Chem. Soc., 125, pp. 2711-2717
  • Zhang, Y., Mao, J.H., Godbout, N., Oldfield, E., (2002) J. Am. Chem. Soc., 124, pp. 13921-13930
  • Nemykin, V.N., Kobayashi, N., Chernii, V.Y., Belsky, V.K., (2001) Eur. J. Inorg. Chem., pp. 733-743
  • Andres, H., Bominaar, E.L., Smith, J.M., Eckert, N.A., Holland, P.L., Münck, E., (2002) J. Am. Chem. Soc., 124, pp. 3012-3025
  • Han, W.G., Lovell, T., Liu, T.Q., Noodleman, L., (2003) Inorg. Chem., 42, pp. 2751-2758
  • Oldfield, E., (2002) Annu. Rev. Phys. Chem., 53, pp. 349-378
  • Lovell, T., Li, J., Liu, T.Q., Case, D.A., Noodleman, L., (2001) J. Am. Chem. Soc., 123, pp. 12392-12410
  • Vrajmasu, V., Münck, E., Bominaar, E.L., (2003) Inorg. Chem., 42, pp. 5974-5988
  • Mouesca, J.M., Noodleman, L., Case, D.A., Lamotte, B., (1995) Inorg. Chem., 34, pp. 4347-4359
  • Mouesca, J.M., Noodleman, L., Case, D.A., (1994) Inorg. Chem., 33, pp. 4819-4830
  • Noodleman, L., (1991) Inorg. Chem., 30, pp. 246-256

Citas:

---------- APA ----------
Sinnecker, S., Slep, L.D., Bill, E. & Neese, F. (2005) . Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe mössbauer spectra. Inorganic Chemistry, 44(7), 2245-2254.
http://dx.doi.org/10.1021/ic048609e
---------- CHICAGO ----------
Sinnecker, S., Slep, L.D., Bill, E., Neese, F. "Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe mössbauer spectra" . Inorganic Chemistry 44, no. 7 (2005) : 2245-2254.
http://dx.doi.org/10.1021/ic048609e
---------- MLA ----------
Sinnecker, S., Slep, L.D., Bill, E., Neese, F. "Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe mössbauer spectra" . Inorganic Chemistry, vol. 44, no. 7, 2005, pp. 2245-2254.
http://dx.doi.org/10.1021/ic048609e
---------- VANCOUVER ----------
Sinnecker, S., Slep, L.D., Bill, E., Neese, F. Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe mössbauer spectra. Inorg. Chem. 2005;44(7):2245-2254.
http://dx.doi.org/10.1021/ic048609e