Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present a kinetic study of OH- additions to several nitrosyl complexes containing mainly ruthenium and different coligands (polypyridines, amines, pyridines, cyanides). According to a first-order rate law in each reactant, we propose a fast ion pair formation equilibrium, followed by addition of OH- to the [MX5NO]n moieties, with formation of the [MX5NO2H](n-1) 0intermediates. Additional attack by a second OH- gives the final products, [MX5NO2](n-2). A linear plot was found for In k4 (the addition rate constant) against the redox potential for nitrosyl reduction, ENO+/NO, showing a free-energy relationship with a slope close to 20 V-1, consistent with an associative mechanism. Theoretical DFT calculated descriptors, as the charge density in the {MNO} moieties and the LUMO energies, qualitatively correlate with the rate constants. A linear to bent transformation was calculated for the nitrosyl complexes, as they evolve to the angular MNO2H and MNO2 complexes. The geometries were optimized for the different complexes and adduct-intermediates, showing significant changes in the relevant distances and angles upon OH- addition. IR vibrations and electronic transitions were also calculated. The complete reaction profile was studied for the nitroprusside ion, including the description of the transition state structure. Experimental activation parameters revealed that both the activation enthalpies and entropies increase when going from the negatively charged to the positively charged complexes. As the rate constants increase in the same direction, we conclude that the reactions are entropically driven, compensating, this function, the increase in the activation enthalpies. The latter trend can be explained by the energies involved in angular reorganization after OH- coordination, which are larger as the positive charge in the nitrosyl moiety becomes larger. The use of ENO+/NO as a predictive tool for electrophilic reactivity could be extended to similar reactions implying other nucleophiles, such as amines and thiolates.

Registro:

Documento: Artículo
Título:Kinetic, mechanistic, and DFT study of the electrophilic reactions of nitrosyl complexes with hydroxide
Autor:Roncaroli, F.; Ruggiero, M.E.; Franco, D.W.; Estiú, G.L.; Olabe, J.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
Departamento de Química, CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
Instituto de Química de Sao Carlos, USP, Sao Carlos, Brazil
Palabras clave:amine; cyanide; hydroxide; nitro derivative; nitroprusside sodium; pyridine derivative; article; calculation; chemical analysis; chemical reaction; chemical reaction kinetics; energy; enthalpy; entropy; geometry; oxidation reduction potential; theory
Año:2002
Volumen:41
Número:22
Página de inicio:5760
Página de fin:5769
DOI: http://dx.doi.org/10.1021/ic025653q
Título revista:Inorganic Chemistry
Título revista abreviado:Inorg. Chem.
ISSN:00201669
CODEN:INOCA
CAS:cyanide, 57-12-5; hydroxide, 14280-30-9; nitroprusside sodium, 14402-89-2, 15078-28-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00201669_v41_n22_p5760_Roncaroli

Referencias:

  • Richter-Addo, G.B., Legzdins, P., (1992) Metal Nitrosyls, , Oxford University Press, New York
  • Swinehart, J.H., (1967) Coord. Chem. Rev., 2, p. 385
  • McCleverty, J.A., (1979) Chem. Rev., 79, pp. 53-76
  • Bottomley, F., (1985) Reactions of Coordinated Ligands, Vol. 2, 2, p. 115. , Braterman, P. S., Ed.; Plenum, New York
  • Ford, P.C., Lorkovic, I.M., (2002) Chem. Rev., 102, p. 993
  • Enemark, J.H., Feltham, R.D., (1974) Coord. Chem. Rev., 13, p. 339
  • Averill, B.A., (1996) Chem. Rev., 96, p. 2951
  • Butler, A.R., Glidewell, C., (1987) Chem. Soc. Rev., 16, p. 361
  • Clarke, M.J., Gaul, J.B., (1993) Struct. Bonding (Berlin), 81, p. 147
  • Stamler, J.S., Singel, D.J., Loscalzo, J., (1992) Science, 258, p. 1898
  • Swinehart, J.H., Rock, P.A., (1966) Inorg. Chem., 5, p. 573
  • Masek, J., Wendt, H., (1969) Inorg. Chim. Acta, 3, p. 455
  • Chevalier, A.A., Gentil, L.A., Olabe, J.A., (1991) J. Chem. Soc., Dalton Trans., p. 1959
  • Baraldo, L.M., Bessega, M.S., Rigotti, G.E., Olabe, J.A., (1994) Inorg. Chem., 33, p. 5890
  • Bottomley, F., (1978) Acc. Chem. Res., 11, p. 158
  • Callahan, R.W., Meyer, T.J., (1977) Inorg. Chem., 16, p. 574
  • Nagao, H., Nishimura, H., Funato, H., Ichikawa, Y., Howell, F.S., Mukaida, M., Kakihana, H., (1989) Inorg. Chem., 28, p. 3955
  • Pipes, D.W., Meyer, T.J., (1984) Inorg. Chem., 23, p. 2466
  • Godwin, J.N., Meyer, T.J., (1971) Inorg. Chem., 10, p. 2150
  • Bottomley, F., Mukaida, M., (1982) J. Chem. Soc., Dalton Trans., p. 1933
  • Roncaroli, F., Baraldo, L.M., Slep, L.D., Olabe, J.A., (2002) Inorg. Chem., 41, p. 1930
  • Gomes, M.G., Davanzo, C.U., Silva, S.C., Lopes, L.G.F., Santos, P.S., Franco, D.W., (1998) J. Chem. Soc., Dalton Trans., p. 601
  • Borges, S., Davanzo, C.U., Castellano, E.E., Schpector, J.Z., Silva, S.C., Franco, D.W., (1998) Inorg. Chem., 37, p. 2670
  • Franco, D.W., Unpublished results; Fiedler, J., (1993) Collect. Czech. Chem. Commun., 58, p. 461
  • Baumann, F., Kaim, W., Baraldo, L.M., Slep, L.D., Olabe, J.A., Fiedler, J., (1999) Inorg. Chim. Acta, 285, p. 129
  • Binstead, R.A., Zuberbuhler, A.D., (1993) SPECFIT, , Spectrum Software Associates: Chapel Hill, NC
  • Zuberbuhler, A.D., (1990) Anal. Chem., 62, p. 2220
  • Haim, A., (1985) Comments Inorg. Chem., 4, p. 113
  • Miralles, A.J., Szecsy, A.P., Haim, A., (1982) Inorg. Chem., 21, p. 697
  • Curtis, J.C., Meyer, T.J., (1982) Inorg. Chem., 21, p. 1562
  • (2001) Cambridge Sructural Database System, Version 5.23, , Cambridge Crystallographic Data Centre: Cambridge, U.K
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (1998) Gaussian 98, Revision A. 9, , Gaussian, Inc.: Pittsburgh, PA
  • Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648
  • Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev., B37, p. 785
  • Pietro, W.J., Francl, M.M., Hehre, W.J., Defrees, D.J., Pople, J.A., Binkley, J.S., (1982) J. Am. Chem. Soc., 104, p. 5039
  • Dobbs, K.D., Hehre, W.J., (1987) J. Comput. Chem., 8, p. 880
  • Binning, R.C., Curtis, L.A., (1990) J. Comput. Chem., 11, p. 1206
  • Hay, P.J., Wadt, W.R., (1985) J. Chem. Phys., 82, p. 299
  • Andrae, D., Haeussermann, U., Dolg, M., Stoll, H., Preuss, H., (1990) Theor. Chim. Acta, 77, p. 123
  • Wong, M.W., Frisch, M.J., Wiberg, K.B., (1991) J. Am. Chem. Soc., 113, pp. 4776-4782
  • Wong, M.W., Wiberg, K.B., Frisch, M.J., (1991) J. Chem. Phys., 95, p. 8991
  • Wiberg, K.B., Keith, T.A., Frisch, M.J., Murcko, M., (1995) J. Phys. Chem., 99, p. 9072
  • Foresman, J.B., Keith, T.A., Wiberg, K.B., Snoonian, J., Frisch, M.J., (1996) J. Phys. Chem., 100, p. 16098
  • Peng, C., Ayala, P.Y., Schelegel, H.B., Frisch, M.J., (1996) J. Comput. Chem., 17, p. 49
  • Casida, M.E., Jamorski, C., Casida, K.C., Salahub, D.R., (1998) J. Chem. Phys., 108, p. 4439
  • Stratmann, R.E., Scuseria, G.E., Frisch, M.J., (1998) J. Chem. Phys., 109, p. 8218
  • Li, J., Noodleman, L., Case, D.A., (1999) Inorganic Electronic Structure and Spectroscopy, 1, p. 661. , Solomon, E. I., Lever, A. B. P., Eds.; Wiley, New York, Chapter 11
  • Gorelsky, S.I., Da Silva, S.C., Lever, A.B.P., Franco, D.W., (2000) Inorg. Chim. Acta, 300-302, p. 698
  • note; Coe, B.J., Meyer, T.J., White, P.S., (1995) Inorg. Chem., 34, p. 593
  • Edwards, J.O., (1965) Inorganic Reaction Mechanisms, , W. A. Benjamin, Inc.: New York
  • Swaddle, T.W., (1974) Coord. Chem. Rev., 14, p. 217
  • Swaddle, T.W., (1983) Advances in Inorganic and Bioinorganic Mechanisms, Vol. 2, 2, p. 95. , A. G. Sykes, Ed.; Academic Press, London
  • Marcus, R.A., (1963) J. Phys. Chem., 67 (853), p. 2889
  • Sutin, N., (1966) Annu. Rev. Phys. Chem., 17, p. 119
  • Oliveira, L.A.A., Giesbrecht, E., Toma, H.E., (1979) J. Chem. Soc., Dalton Trans., p. 236
  • Parise, A.R., Baraldo, L.M., Olabe, J.A., (1996) Inorg. Chem., 35, p. 5080
  • Marcus, R.A., (1968) J. Phys. Chem., 72, p. 891
  • Cohen, A.O., Marcus, R.A., (1968) J. Phys. Chem., 72, p. 891
  • Wilkins, R.W., (1991) Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd Ed., , VCH: Weinheim
  • note; Johnson, M.D., Wilkins, R.G., (1984) Inorg. Chem., 23, p. 231
  • Schwane, J.D., Ashby, M.T., (2002) J. Am. Chem. Soc., 124, p. 6822
  • Chen, P., Meyer, T., (1998) J. Chem. Rev., 98, p. 1439
  • Stavrev, K., Zemer, M.C., Meyer, T.J., (1995) J. Am. Chem. Soc., 117, p. 8684
  • Westcott, B.L., Enemark, J.H., (1999) Inorganic Electronic Structure and Spectroscopy, Vol II, 2, p. 403. , Solomon, E. I., Lever, A. B. P., Eds.; Wiley-Interscience: New York; Chapter 7
  • Gorelsky, S.I., Lever, A.B.P., (2000) Int. J. Quantum Chem., 80, p. 636
  • Boulet, P., Buchs, M., Chermette, H., Daul, C., Gilardoni, F., Rogemond, F., Schlapfer, C.W., Weber, J., (2001) J. Phys. Chem. A, 105, p. 8991
  • Wanner, M., Scheiring, T., Kaim, W., Slep, L.D., Baraldo, L.M., Olabe, J.A., Zális, S., Baerends, E.J., (2001) Inorg. Chem., 40, p. 5704
  • Nagao, H., Ito, K., Tsuboya, N., Ooyama, D., Nagao, N., Howell, F.S., Mukaida, M., (1999) Inorg. Chim. Acta, 290, p. 113
  • Carducci, M.D., Pressprich, M.R., Coppens, P., (1997) J. Am. Chem. Soc., 119, p. 2669
  • Chacón Villalba, M.E., Guida, J.A., Varetti, E.L., Aymonino, P.J., (2001) Spectrochim. Acta, A57, p. 367
  • González Lebrero, M.C., Scherlis, D.A., Estiú, G.L., Olabe, J.A., Estrin, D.A., (2001) Inorg. Chem., 40, p. 4127
  • Nakamoto, K., (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Ed., , Wiley, New York
  • Macartney, D.H., (1988) Rev. Inorg. Chem., 9, p. 101
  • Manoharan, P.T., Gray, H.B., (1965) J. Am. Chem. Soc., 87, p. 3340
  • Manoharan, P.T., Gray, H.B., (1966) Inorg. Chem., 5, p. 823
  • Maciejowska, I., Stasicka, Z., Stochel, G., Van Eldik, R., (1999) J. Chem. Soc., Dalton Trans., p. 3643
  • Ford, P.C., Rokicki, A., (1988) Adv. Organomet. Chem., 28, p. 139
  • March, J., (1992) Advanced Organic Chemistry, 4th Ed, , Wiley, New York
  • Gutiérrez, M.M., Amorebieta, V.T., Estiú, G.L., Olabe, J.A., (2002) J. Am. Chem. Soc., 124, p. 10307
  • Olabe, J.A., Estiú, G.L., submitted for publication

Citas:

---------- APA ----------
Roncaroli, F., Ruggiero, M.E., Franco, D.W., Estiú, G.L. & Olabe, J.A. (2002) . Kinetic, mechanistic, and DFT study of the electrophilic reactions of nitrosyl complexes with hydroxide. Inorganic Chemistry, 41(22), 5760-5769.
http://dx.doi.org/10.1021/ic025653q
---------- CHICAGO ----------
Roncaroli, F., Ruggiero, M.E., Franco, D.W., Estiú, G.L., Olabe, J.A. "Kinetic, mechanistic, and DFT study of the electrophilic reactions of nitrosyl complexes with hydroxide" . Inorganic Chemistry 41, no. 22 (2002) : 5760-5769.
http://dx.doi.org/10.1021/ic025653q
---------- MLA ----------
Roncaroli, F., Ruggiero, M.E., Franco, D.W., Estiú, G.L., Olabe, J.A. "Kinetic, mechanistic, and DFT study of the electrophilic reactions of nitrosyl complexes with hydroxide" . Inorganic Chemistry, vol. 41, no. 22, 2002, pp. 5760-5769.
http://dx.doi.org/10.1021/ic025653q
---------- VANCOUVER ----------
Roncaroli, F., Ruggiero, M.E., Franco, D.W., Estiú, G.L., Olabe, J.A. Kinetic, mechanistic, and DFT study of the electrophilic reactions of nitrosyl complexes with hydroxide. Inorg. Chem. 2002;41(22):5760-5769.
http://dx.doi.org/10.1021/ic025653q