Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The interaction between nitric oxide (NO) and the active site of ferric cytochrome P450 was studied by means of density functional theory (DFT), at the generalized gradient approximation level, and of the SAM1 semiempirical method. The electrostatic effects of the protein environment were included in our DFT scheme by using a hybrid quantum classical approach. The active-site model consisted of an iron(III) porphyrin, the adjacent cysteine residue, and one coordinated water molecule. For this system, spin populations and relative energies for setected spin states were computed. Interestingly, the unpaired electron density, the HOMO, and the LUMO were found to be highly localized on the iron and in an appreciable extent on the sulfur coordinated to the metal. This provides central information about the reactivity of nitric oxide with the active site. Since the substitution of a molecule of H2O by NO has been proposed as being responsible for the inhibition of the cytochrome in the presence of nitric oxide, we have analyzed the thermodynamic feasibility of the ligand exchange process. The structure of the nitrosylated active site was partially optimized using SAM1. A low-spin ground state was obtained for the nitrosyl complex, with a linear Fe-N-O angle. The trends found in Fe-N-O angles and Fe-N lengths of the higher energy spin states provided a notable insight into the electronic configuration of the complex within the framework of the Enemark and Feltham formalism. In relation to the protein environment, it was assessed that the electrostatic field has significant effects on several computed properties. However, in both vacuum and protein environments, the ligand exchange reaction turned out to be exergonic and the relative orders of spin states of the relevant species were the same.

Registro:

Documento: Artículo
Título:Nitric oxide binding to ferric cytochrome P450: A computational study
Autor:Scherlis, D.A.; Cymeryng, C.B.; Estrin, D.A.
Filiación:Depto. Quim. Inorg., Analitica Q., Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Depto. de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:cytochrome P450; nitric oxide; ferric ion; protein; water; article; catalysis; chemical binding; electron transport; enzyme active site; enzyme binding; geometry; quantum chemistry; thermodynamics; binding site; chemical model; chemistry; computer simulation; conformation; drug antagonism; metabolism; X ray crystallography; Binding Sites; Computer Simulation; Crystallography, X-Ray; Cytochrome P-450 Enzyme System; Ferric Compounds; Models, Chemical; Molecular Conformation; Nitric Oxide; Proteins; Thermodynamics; Water
Año:2000
Volumen:39
Número:11
Página de inicio:2352
Página de fin:2359
DOI: http://dx.doi.org/10.1021/ic991191d
Título revista:Inorganic Chemistry
Título revista abreviado:Inorg. Chem.
ISSN:00201669
CODEN:INOCA
CAS:Cytochrome P-450 Enzyme System, 9035-51-2; Ferric Compounds; Nitric Oxide, 10102-43-9; Proteins; Water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00201669_v39_n11_p2352_Scherlis

Referencias:

  • note; Lewis, D.F., Pratt, J.M., (1998) Drug Metab. Rev., 30, p. 739
  • Poulos, T.L., (1995) Curr. Opin. Struct. Biol., 5, p. 767
  • Ortiz De Montellano, P.R., (1995) Cytochrome P-450: Structure, Mechanism and Biochemistry, , Plenum Press: New York
  • Guengerich, F.P., MacDonald, T.L., (1990) FASEB J., 4, p. 2453
  • Dawson, J.H., Sono, M., (1987) Chem. Rev., 87, p. 1255
  • Hanke, C.J., Drewett, J.G., Myers, C.R., Campbell, W.B., (1998) Endocrinology, 139, p. 4053
  • Del Punta, K., Charreau, E.H., Pignataro, O., (1996) Endocrinology, 137, p. 5337
  • Van Voorhis, B.J., Dunn, M.S., Snyder, G.D., Weiner, C.P., (1994) Endocrinology, 135, p. 1799
  • Minamiyama, Y., Takemura, S., Imaoka, S., Funae, Y., Tanimoto, Y., Inoue, M., (1997) J. Pharmacol. Exp. Ther., 283, p. 1479
  • Marques, H.M., Munro, O.Q., Grimmer, N.E., Levendis, D.C., Marsicano, F., Pattrick, G., Markoulides, T., (1995) J. Chem. Soc., Faraday Trans., 91, p. 1741
  • Ghosh, A., Almlof, J., Lawrence Jr., Q., (1994) J. Phys. Chem., 98, p. 5576
  • Ghosh, A., Bocian, D.F., (1996) J. Phys. Chem., 100, p. 6363
  • Matsuzawa, N., Ata, M., Dixon, D.A., (1995) J. Phys. Chem., 99, p. 7698
  • Jones, D.H., Hinman, A.S., Ziegler, T., (1993) Inorg. Chem., 32, p. 2092
  • Havlin, R.H., Godbout, N., Salzmann, R., Wojdelski, M., Arnold, W., Schulz, C.E., Oldfield, E., (1998) J. Am. Chem. Soc., 120, p. 3144
  • Spiro, G.T., Kozlowski, P.M., (1998) J. Am. Chem. Soc., 120, p. 4524
  • Green, M.T., (1998) J. Am. Chem. Soc., 120, p. 10772
  • Green, M.T., (1999) J. Am. Chem. Soc., 121, p. 7939
  • Harris, D., Loew, G.H., Komornicki, A., (1997) J. Phys. Chem. A, 101, p. 3959
  • Harris, D., Loew, G.H., Waskell, L., (1998) J. Am. Chem. Soc., 120, p. 4308
  • Henson, N.J., Hay, P.J., Redondo, A., (1999) Inorg. Chem., 38, p. 1618
  • Rovira, C., Kunc, K., Hutter, J., Ballone, P., Parrinello, M., (1997) J. Phys. Chem. A, 101, p. 8914
  • Rovira, C., Parrinello, M., (1998) Int. J. Quantum Chem., 70, p. 387
  • Rovira, C., Ballone, P., Parrinello, M., (1997) Chem. Phys. Lett., 271, p. 246
  • De Groot, M.J., Havenith, R.W.A., Vinkers, H.M., Zwaans, R., Vermeulen, N.P.E., Van Lenthe, J.H., (1998) J. Comput.-Aided Mol. Des., 12, p. 183
  • Yeom, H., Sligar, S.G., Li, H., Poulos, T.L., Fulco, A.J., (1995) Biochemistry, 34, p. 14733
  • (1997) HyperChem, Release 5.1, , Pro; Hypercube, Inc.: Gainesville, FL
  • Branden, C., Tooze, J., (1991) Introduction to Protein Structure, , Garland Publishing, Inc.: New York and London
  • (1994) AMPAC 5.0, , 1994 Semichem: Shawnee, KS
  • Holder, A.J., Ward, R., (1998) Abstr. Pap-Am. Chem. Soc., 216, p. 174
  • White, D.A., Holder, A.J., Jie, C., (1998) Abstr. Pap-Am. Chem. Soc., 216, p. 182
  • Estrin, D., Hamra, O.Y., Paglieri, L., Slep, L., Olabe, J., (1996) Inorg. Chem., 35, p. 6832
  • Estrin, D., Baraldo, L., Slep, L., Barja, B., Olabe, J., Paglieri, L., Corongiu, G., (1996) Inorg. Chem., 35, p. 3897
  • Taylor, J.C., Mueller, M.H., Hitterman, R.L., (1974) Acta Crystallogr., A26, p. 559
  • Bottomley, F., White, P.S., (1979) Acta Crystallogr., B35, p. 2193
  • Bray, M., Deeth, R., Paget, V., Sheen, P., (1996) Int. J. Quantum Chem., 61, p. 85
  • Lang, G., Spartalian, K., Reed, C.A., Collman, L., (1978) J. Chem. Phys., 69, p. 5424
  • Goff, H., La Mar, G.N., Reed, C.A., (1977) J. Am. Chem. Soc., 99, p. 3641
  • Estrin, D.A., Corongiu, G., Clementi, E., (1993) METECC, Methods and Techniques in Computational Chemistry, , Clementi, E., Ed.; Stef: Cagliari, Italy
  • Kohn, W., Sham, L.J., (1965) Phys. Rev., A140, p. 1133
  • Becke, A.D., (1988) J. Chem. Phys., 88, p. 1053
  • Godbout, N., Salahub, D.R., Andzelm, J., Wimmer, E., (1992) Can. J. Chem., 70, p. 560
  • Andzelm, J., Radzio, E., Salahub, D.R., (1985) J. Comput. Chem., 6, p. 520
  • Sim, F., Salahub, D.R., Chin, S., Dupuis, M., (1991) J. Chem. Phys., 95, p. 4317
  • Sim, F., St-Amant, A., Papai, I., Salahub, D.R., (1992) J. Am. Chem. Soc., 114, p. 4391
  • Vosko, S.H., Wilk, L., Nusair, M., (1980) Can. J. Phys., 58, p. 1200
  • Perdew, P.W., (1986) Phys. Rev., B33, p. 8800
  • (1986) Phys. Rev., B34, p. 7406. , erratum
  • Becke, A.D., (1988) Phys. Rev., A38, p. 3098
  • Elola, M.D., Laria, D., Estrin, D.A., (1999) J. Phys. Chem. A, 103, p. 5105
  • Stanton, R.V., Little, L.R., Merz, K.M., (1995) J. Phys. Chem., 99, p. 17344
  • Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Weiner, P., (1984) J. Am. Chem. Soc., 106, p. 765
  • Weiner, S.J., Kollman, P.A., Nguyen, D.T., Case, D.A., (1986) J. Comput. Chem., 7, p. 230
  • Parr, R.G., Yang, W., (1990) Density-Functional Theory of Atoms and Molecules, , Oxford University Press: New York
  • Fukui, K., (1975) Theory of Orientation and Stereoselection, , SpringerVerlag: Berlin
  • Fukui, K., (1987) Science, 218, p. 747
  • Fukui, K., Yonezawa, T., Shingu, H., (1952) J. Chem. Phys., 20, p. 722
  • Fukui, K., Yonezawa, T., Nagata, C., Shingu, H., (1954) J. Chem. Phys., 22, p. 1433
  • Vasquez, G.B., Ji, X., Pechik, I., Fronticelli, C., Gilliland, G.L., X-ray Structure of Alpha-Oxy, Beta-(C1 12g)deoxy Human Hemoglobin, , http://www.ncbi.nlm.nih.gov, PDB Code: 1GBV. Protein Data Bank at the National Library of Medicine
  • Collman, J.P., Sorrell, T.N., Hoffman, B.M., (1975) J. Am. Chem. Soc., 97, p. 913
  • Collman, J.P., Sorrell, T.N., Hodgson, K.O., Kulshrestha, A.K., Strouse, C.E., (1977) J. Am. Chem. Soc., 99, p. 5180
  • English, D.R., Hendrickson, D.N., Suslick, K.S., Eigenbrot, C.W., Scheldt, W.R., (1984) J. Am. Chem. Soc., 106, p. 7258
  • Scheidt, W.R., Ellison, M.K., (1999) Acc. Chem. Res., 32, p. 350
  • Enemark, J.H., Feltham, R.D., (1974) Coord. Chem. Rev., 13, p. 339
  • Hoffmann, R., Chen, M.M.L., Elian, M., Rossi, A.R., Mingo, D.M.P., (1974) Inorg. Chem., 13, p. 2666
  • Wayland, B.B., Olson, L.W., (1974) J. Am. Chem. Soc., 96, p. 6037
  • Wong, M.W., Wiberg, K.B., Frisch, M.J., (1992) J. Am. Chem. Soc., 114, p. 1645
  • Hoshino, M., Maeda, M., Konishi, R., Seki, H., Ford, P., (1996) J. Am. Chem. Soc., 118, p. 5702
  • Ziegler, T., (1991) Chem. Rev., 91, p. 651
  • Li, H., Poulos, T.L., (1995) Acta Crystallogr., D51, p. 21
  • Schlichting, I., Jung, C., Schulze, H., (1997) FEBS Lett., 3, p. 253
  • Sundaramoorthy, M., Terrer, J., Poulos, T.L., (1995) Structure (London), 3, p. 1367
  • Peng, S.M., Ibers, J.A., (1976) J. Am. Chem. Soc., 98, p. 8032
  • Scheidt, W.R., Prisse, M.E., (1975) J. Am. Chem. Soc., 97, p. 17
  • Jameson, G.B., Rodley, G.A., Robinson, W.T., Gagne, R.R., Reed, C.A., Collman, J.P., (1978) Inorg. Chem., 17, p. 850
  • Momenteau, M., Reed, C.A., (1994) Chem. Rev., 94, p. 659

Citas:

---------- APA ----------
Scherlis, D.A., Cymeryng, C.B. & Estrin, D.A. (2000) . Nitric oxide binding to ferric cytochrome P450: A computational study. Inorganic Chemistry, 39(11), 2352-2359.
http://dx.doi.org/10.1021/ic991191d
---------- CHICAGO ----------
Scherlis, D.A., Cymeryng, C.B., Estrin, D.A. "Nitric oxide binding to ferric cytochrome P450: A computational study" . Inorganic Chemistry 39, no. 11 (2000) : 2352-2359.
http://dx.doi.org/10.1021/ic991191d
---------- MLA ----------
Scherlis, D.A., Cymeryng, C.B., Estrin, D.A. "Nitric oxide binding to ferric cytochrome P450: A computational study" . Inorganic Chemistry, vol. 39, no. 11, 2000, pp. 2352-2359.
http://dx.doi.org/10.1021/ic991191d
---------- VANCOUVER ----------
Scherlis, D.A., Cymeryng, C.B., Estrin, D.A. Nitric oxide binding to ferric cytochrome P450: A computational study. Inorg. Chem. 2000;39(11):2352-2359.
http://dx.doi.org/10.1021/ic991191d