Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Extraordinary transmission and other interesting related phenomena for 1-D periodic arrays of slits (compound diffraction gratings) have recently been the object of intense research in the optics and solid state physics communities. This case should be differentiated from the extraordinary transmission through arrays of small apertures on metal screens since small holes only support below-cutoff modes, whereas slits can also support transverse electromagnetic modes without cutoff frequency. In this paper, an equivalent-circuit approach is proposed to account for the most relevant details of the behavior of slit-based periodic structures: extraordinary transmission peaks, FabryProt resonances, and transmission dips observed in compound structures. The proposed equivalent-circuit model, based on well-established concepts of waveguide and circuit theory, provides a simple and accurate description of the phenomenon that is appropriate for educational purposes, as well as for the design of potential devices based on the behavior of the structures under study. © 2006 IEEE.

Registro:

Documento: Artículo
Título:Extraordinary transmission through arrays of slits: A circuit theory model
Autor:Medina, F.; Mesa, F.; Skigin, D.C.
Filiación:Microwaves Group, Department of Electronics and Electromagnetism, University of Seville, 41012-Seville, Spain
Applied Electromagnetics Group, Physics Department, University of Buenos Aires, C1428EHA Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ, Buenos Aires, Argentina
Palabras clave:Diffraction gratings; Extraordinary transmission; Impedance matching; Surface plasmon polaritons (SPPs); Compound structures; Cutoff modes; Equivalent-circuit model; Extraordinary transmission; Impedance matchings; Metal screens; Periodic arrays; Small aperture; Small Hole; Surface plasmon polaritons; Surface plasmon polaritons (SPPs); Transverse electromagnetic mode; Cutoff frequency; Diffraction; Diffraction gratings; Electric network analysis; Impedance matching (electric); Light; Periodic structures; Phonons; Photons; Plasmons; Quantum theory; Solids; Surface plasmon resonance; Electromagnetic wave transmission
Año:2010
Volumen:58
Número:1
Página de inicio:105
Página de fin:115
DOI: http://dx.doi.org/10.1109/TMTT.2009.2036341
Título revista:IEEE Transactions on Microwave Theory and Techniques
Título revista abreviado:IEEE Trans. Microwave Theory Tech.
ISSN:00189480
CODEN:IETMA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00189480_v58_n1_p105_Medina

Referencias:

  • Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A., Extraordinary optical transmission through sub-wavelength hole arrays (1998) Nature, 391, pp. 667-669. , Feb
  • García-De-Abajo, F.J., Colloquium: Light scattering by particle and hole arrays (2007) Rev. Mod. Phys., 79, pp. 1267-1290. , Oct.-Dec
  • Genet, C., Ebbesen, T.W., Light in tiny holes (2007) Nature, 445, pp. 39-46. , Jan
  • Nahata, A., Matsui, T., Agrawal, A., Vardeny, Z.V., Transmission resonances through aperiodic arrays of subwavelength apertures (2007) Nature, 446, pp. 517-521
  • Lezec, H.J., Degiron, A., Devaux, E., Linke, R.A., Martín-Moreno, L., García-Vidal, F.J., Ebbesen, T.W., Beaming light from a subwavelength aperture (2002) Science, 297, pp. 820-822
  • Oliner, A.A., Jackson, D.R., Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture-Part I: Basic features (2003) IEEE AP-S Int. Symp., 2, pp. 1091-1094. , Jun. 22-27
  • Jackson, D.R., Zhao, T., Williams, J.T., Oliner, A.A., Leaky surface-plasmon theory for dramatically enhanced transmission through a sub-wavelength aperture-Part II: Leaky-wave antenna model (2003) IEEE AP-S Int. Symp., 2, pp. 1095-1098. , Jun. 22-27
  • Akarca-Biyikli, S.S., Bulu, I., Ozbay, E., Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture (2004) Appl. Phys. Lett., 85 (7), pp. 1098-2000. , Aug
  • García-De-Abajo, F.J., Light transmission through a single cylindrical hole in a metallic film (2002) Opt. Exp., 10 (25), pp. 1475-1484
  • Brok, J.M., Urbach, H.P., Extraordinary transmission through 1, 2 and 3 holes in a perfect conductor, modelled by a mode expansion technique (2006) Opt. Exp., 14 (7), pp. 2552-2572. , Apr
  • Koch, G.F., Kolbig, K.S., The transmission coefficient of elliptical and rectangular apertures for electromagnetic waves (1968) IEEE Trans. Antennas Propag., AP-16 (1), pp. 78-83. , Jan
  • Jin, J.M., Volakis, J.M., Electromagnetic scattering by and transmission through a three-dimensional slot in a thick conducting plane (1991) IEEE Trans. Antennas Propag., 39 (4), pp. 543-550. , Apr
  • Pendry, J.B., Martín-Moreno, L., Garcia-Vidal, F.J., Mimicking surface plasmons with structured surfaces (2004) Science, 305, pp. 847-848. , Aug
  • García-De-Abajo, F.J., Sáenz, J.J., Electromagnetic surface modes in structured perfect-conductor surfaces (2005) Phys. Rev. Lett., 95, pp. 2339011-2339014. , Dec
  • Williams, C.R., Andrews, S.R., Maier, S.A., Fernández-Domínguez, A.I., Martín-Moreno, L., García-Vidal, F.J., Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces (2008) Nature Photon., 2, pp. 175-179. , Mar
  • Lockyear, M.J., Hibbins, A.P., Sambles, J.R., Microwave surfaceplasmon-like modes on thin metamaterials (2009) Phys. Rev. Lett., 102, p. 073901. , Feb
  • Beruete, M., Sorolla, M., Campillo, I., Dolado, J.S., Martín-Moreno, L., Bravo-Abad, J., García-Vidal, F.J., Enhanced millimeter wave transmission through quasioptical subwavelength perforated plates (2005) IEEE Trans. Antennas Propag., 53 (6), pp. 1897-1903. , Jun
  • Collin, R.E., (1971) Field Theory of Guided Waves, , New York: IEEE Press
  • Barnes, W.L., Dereux, A., Ebbesen, T.W., Surface plasmon subwavelength optics (2003) Nature, 424, pp. 824-830. , Aug
  • Treacy, M.M.J., Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings (2002) Phys. Rev. B, Condens. Matter, 66, pp. 1951051-19510511
  • Lezec, H.J., Thio, T., Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays (2004) Opt. Exp., 12 (16), pp. 3629-3651. , Aug
  • Abajo De García, F.J., Gómez-Medina, R., Sáenz, J.J., Full transmission through perfect-conductor subwavelength hole arrays (2005) Phys. Rev. e, 72, pp. 0166081-0166084
  • Medina, F., Mesa, F., Marqués, R., Equivalent circuit model to explain extraordinary transmission (2008) IEEE MTT-S Int. Microw. Symp., pp. 213-216. , Atlanta, GA, Jun. 15-20
  • Medina, F., Mesa, F., Marqués, R., Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective (2008) IEEE Trans. Microw. Theory Tech., 56 (12), pp. 3108-3120. , Dec
  • Gordon, R., Bethe's aperture theory for arrays (2007) Phys. Rev. A, 76
  • Pang, Y., Hone, A.N., So, P.P.M., Gordon, R., Total optical transmission through a small hole in a metal waveguide screen Bethe's aperture (2009) Opt. Exp., 17 (6), pp. 4433-4441
  • Kirilenko, A.A., Perov, A.O., On the common nature of the enhanced and resonance transmission through the periodical set of holes (2008) IEEE Trans. Antennas Propag., 56 (10), pp. 3210-3216. , Oct
  • Don, N.G., Kirilenko, A.A., Senkevich, S.L., New type of eigenoscillations and total-transmission resonance through an iris with below-cutoff hole in a rectangular waveguide (2008) Radiophys. Quantum Electron., 51 (2), pp. 101-108. , Feb
  • Medina, F., Skigin, D.C., Mesa, F., Extraordinary transmission through slits from a microwave engineering perspective (2008) Proc. 38th Eur. Microw. Con., pp. 702-705. , Amsterdam, The Netherlands, Oct
  • Porto, J.A., García-Vidal, F.J., Pendry, J.B., Transmission resonances on metallic gratings with very narrow slits (1999) Phys. Rev. Lett., 83 (14), pp. 2845-2848. , Oct
  • García-Vidal, F.J., Martín-Moreno, L., Transmission and focusing of light in one-dimensional periodically nanostructured metals (2002) Phys. Rev. B, Condens. Matter, 66, pp. 1554121-15541210
  • Skigin, D.C., Depine, R., Transmission resonances of metallic compound gratings with subwavelength slits (2005) Phy. Rev. Lett., 95, pp. 2174021-2174024
  • Takakura, Y., Optical resonance in a narrow slit in a thick metallic screen (2001) Phys. Rev. Lett., 86 (24), pp. 5601-5603. , Jun
  • Yang, F., Sambles, J.R., Resonant transmission of microwaves through a narrow metallic slit (2002) Phys. Rev. Lett., 89 (6), pp. 0639011-0639014. , Aug
  • Suckling, J.R., Hibbins, A.P., Lockyear, M.J., Preist, T.W., Sambles, J.R., Lawrence, C.R., Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies (2004) Phys. Rev. Lett., 92 (14), pp. 1474011-1474014. , Apr
  • Skigin, D.C., Depine, R., Narrow gaps for transmission through metallic structured gratings with subwavelength slits (2006) Phys. Rev. e, 74, pp. 0466061-0466066
  • Skigin, D.C., Loui, H., Popovic, Z., Kuester, E.F., Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits (2007) Phys. Rev. e, 76, pp. 0166041-0166046
  • Hibbins, A.P., Hooper, I.R., Lockyear, M.J., Sambles, J.R., Microwave transmission of a compound metal grating (2006) Phys. Rev. Lett., 96, pp. 2574021-2574024
  • Ma, Y.G., Rao, X.S., Zhang, G.F., Ong, C.K., Microwave transmission modes in compound metallic gratings (2007) Phys. Rev. B, 76, pp. 0854131-0854135. , Aug
  • Navarro-Cía, M., Skigin, D.C., Beruete, M., Sorolla, M., Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime (2009) App. Phys. Lett., 94, pp. 0911071-0911073. , Mar
  • A. A. Kirilenko, private communication; Sologub, V.G., Schestopalov, V.P., Polovnikov, G.G., Diffraction of electromagnetic waves on the grating with narrow slits (1967) J. Tech. Phys., 37 (4), pp. 667-679. , (in Russian)
  • Sologub, V.G., Schestopalov, V.P., The resonance phenomena at the diffraction of the K a-polarized waves on the gratings of metal bars (1968) J. Tech. Phys., 38 (9), pp. 1505-1520. , (in Russian)
  • Masalov, S.A., Sirenko, Y.K., Schestopalov, V.P., The solution of the problem of the plane wave diffraction on the knife-type grating with compound structure of a period (1978) Radiotek. Electron., 23 (3), pp. 481-487. , (in Russian)
  • Guglielmi, M., Oliner, A.A., Multimode network description of a planar periodic metal-strip grating at a dielectric interface-Part I: Rigorous network formulations (1989) IEEE Trans. Microw. Theory Tech., 37 (3), pp. 535-541. , Mar
  • Guglielmi, M., Oliner, A.A., Multimode network description of a planar periodic metal-strip grating at a dielectric interface-Part II: Small-aperture and small-obstacle solutions (1989) IEEE Trans. Microw. Theory Tech., 37 (3), pp. 542-552. , Mar
  • Fernández-Prieto, A., Medina, F., Mesa, F., Microstrip circuit analog of a complex diffraction phenomenon (2009) Appl. Phys. Lett., 95, pp. 0211081-0211083. , Jul

Citas:

---------- APA ----------
Medina, F., Mesa, F. & Skigin, D.C. (2010) . Extraordinary transmission through arrays of slits: A circuit theory model. IEEE Transactions on Microwave Theory and Techniques, 58(1), 105-115.
http://dx.doi.org/10.1109/TMTT.2009.2036341
---------- CHICAGO ----------
Medina, F., Mesa, F., Skigin, D.C. "Extraordinary transmission through arrays of slits: A circuit theory model" . IEEE Transactions on Microwave Theory and Techniques 58, no. 1 (2010) : 105-115.
http://dx.doi.org/10.1109/TMTT.2009.2036341
---------- MLA ----------
Medina, F., Mesa, F., Skigin, D.C. "Extraordinary transmission through arrays of slits: A circuit theory model" . IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, 2010, pp. 105-115.
http://dx.doi.org/10.1109/TMTT.2009.2036341
---------- VANCOUVER ----------
Medina, F., Mesa, F., Skigin, D.C. Extraordinary transmission through arrays of slits: A circuit theory model. IEEE Trans. Microwave Theory Tech. 2010;58(1):105-115.
http://dx.doi.org/10.1109/TMTT.2009.2036341