Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Mechanical stress due to a misfit between a thin film and its substrate induces strains which can strongly modify the unstrained thin film properties. One good and interesting example to study strain effects is given by ultrathin films of Fe epitaxially grown on MnAs(110)/GaAs(001). The MnAs(110) films show, at room temperature, coexistence of two structural phases, which organize themselves forming a striped pattern. The Fe epilayer senses the strain effects due to lattice mismatch and to the border constraints given by the striped substrate. In this work, we are concerned with the consequences that this strain has on the magnetic anisotropy of the Fe thin film and try to explain recent experimental results. These experiments indicate an easy axis rotation of the film Fe atoms sitting on one of the striped phases. In order to have an approach to the understanding of the observed phenomenon, we make use of ab initio calculations and of the magnetoelastic model. We find that both the magnetoelastic model and the ab initio calculated spin orbit coupling point towards the strain effects as the most important contribution to the observed easy axis rotation. © 1965-2012 IEEE.

Registro:

Documento: Artículo
Título:Strain induced anisotropy change in ultrathin Fe films grown on MnAs(110)/GaAs(001)
Autor:Helman, C.; Llois, A.M.
Filiación:GIyA-Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Pdo. San Martín, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Buenos Aires, Argentina
Departamento de Física J. J. Giambiagi, FCEyN, UBA, Buenos Aires, Argentina
Palabras clave:Magnetic anisotrophy; Magnetic devices; Magnetoelasticity; Nanomaterials; Ab initio calculations; Magnetic anisotrophy; Magneto-elasticity; Mechanical stress; Spin-orbit couplings; Strain-induced anisotropy; Thin-film properties; Ultrathin Fe films; Calculations; Gallium arsenide; Magnetic devices; Nanostructured materials; Semiconducting gallium; Stresses; Ultrathin films; Strain
Año:2013
Volumen:49
Número:8
Página de inicio:4675
Página de fin:4678
DOI: http://dx.doi.org/10.1109/TMAG.2013.2260323
Título revista:IEEE Transactions on Magnetics
Título revista abreviado:IEEE Trans Magn
ISSN:00189464
CODEN:IEMGA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00189464_v49_n8_p4675_Helman

Referencias:

  • Sacchi, M., Marangolo, M., Spezzani, C., Coelho, L., Breitwieser, R., Milano, J., Etgens, V.H., Uniaxial anisotropy and temperature driven magnetization reversal of Fe deposited on aMnAsGaAs(001)magnetic template (2008) Phys. Rev. B, 77, p. 165317. , http://link.aps.org/doi/10.1103/PhysRevB.77.165317, Apr., [Online]
  • Helman, C., Milano, J., Tacchi, S., Madami, M., Carlotti, G., Gubbiotti, G., Alejandro, G., Pini, M.G., Temperature evolution of self-organized stripe domains in ultrathin Fe films on MnAs/GaAs(001) (2010) Phys. Rev. B, 82 (9), p. 094423. , Sep
  • Vidal, F., Spezzani, C., Breitwieser, R., Marangolo, M., Eddrief, M., Sacchi, M., Etgens, V.H., Tuning the period of elastic MnAs/GaAs(001) alpha - Beta pattern by Fe deposition (2010) Appl. Phys. Lett, 97 (25), p. 251914. , http://link.aip.org/link/?APL/97/251914/1, [Online]
  • Tacchi, S., Madami, M., Carlotti, G., Gubbiotti, G., Marangolo, M., Milano, J., Breitwieser, R., Pini, M.G., Magnetic Fe stripes created by self-organized MnAs template: Stripe edge pinning and high-frequency properties (2009) Phys. Rev. B, 80, p. 155427. , http://link.aps.org/doi/10.1103/PhysRevB.80.155427, Oct., [Online]
  • Kresse, G., Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set (1996) Computational Materials Science, 6 (1), pp. 15-50. , DOI 10.1016/0927-0256(96)00008-0, PII S0927025696000080
  • Kresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B, 59, pp. 1758-1775. , http://link.aps.org/doi/10.1103/Phys-RevB.59.1758, Jan., [Online]
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, p. 3865
  • Rungger, I., Sanvito, S., Ab initio study of the magnetostructural properties of MnAs (2006) Phys. Rev. B, 74, p. 024429. , http://link.aps.org/doi/10.1103/PhysRevB.74.024429, Jul., [Online]
  • Blonski, P., Dennler, S., Hafner, J., Strong spin-orbit effects in small pt clusters: Geometric structure, magnetic isomers and anisotropy (2011) J. Chem. Phys, 134 (3), p. 034107. , http://link.aip.org/link/?JCP/134/034107/1, [Online]
  • Mu Noz, F., Mejía-López, J., Pérez-Acle, T., Romeroc, A.H., Uniaxial magnetic anisotropy energy of Fe wires embedded in carbon nanotubes (2010) ACS Nano, 4 (5), pp. 2883-2891. , http://pubs.acs.org/doi/abs/10.1021/nn901834z, [Online], pMID: 20433161
  • Ravindran, P., Kjekshus, A., Fjellvåg, H., James, P., Nordström, L., Johansson, B., Eriksson, O., Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations (2001) Phys. Rev. B, 63, p. 144409. , http://link.aps.org/doi/10.1103/PhysRevB.63.144409, Mar., [Online]
  • Breitwieser, R., Vidal, F., Graff, I.L., Marangolo, M., Eddrief, M., Boulliard, J.-C., Etgens, V.H., Phase transition and surface morphology ofMnAs/GaAs(001) studied with in situ variable-temperature scanning tunneling microscopy (2009) Phys. Rev. B, 80, p. 045403. , http://link.aps.org/doi/10.1103/PhysRevB.80.045403, Jul., [Online]
  • Sander, D., The correlation between mechanical stress and magnetic anisotropy in ultrathin films (1999) Rep. Progr. Phys, 62 (5), p. 809. , http://stacks.iop.org/0034-4885/62/i=5/a=204, [Online]
  • Kittel, C., Physical theory of ferromagnetic domains (1949) Rev.Mod. Phys, 21, pp. 541-583. , http://link.aps.org/doi/10.1103/RevModPhys.21.541, Oct., [Online]
  • Steren, L.B., Milano, J., Garcia, V., Marangolo, M., Eddrief, M., Etgens, V.H., Magnetization reversal and anomalous dependence of the coercive field with temperature in mnas epilayers grown on GaAs (2006) Phys. Rev. B, 74, p. 144402. , http://link.aps.org/doi/10.1103/PhysRevB.74.144402, Oct., [Online]

Citas:

---------- APA ----------
Helman, C. & Llois, A.M. (2013) . Strain induced anisotropy change in ultrathin Fe films grown on MnAs(110)/GaAs(001). IEEE Transactions on Magnetics, 49(8), 4675-4678.
http://dx.doi.org/10.1109/TMAG.2013.2260323
---------- CHICAGO ----------
Helman, C., Llois, A.M. "Strain induced anisotropy change in ultrathin Fe films grown on MnAs(110)/GaAs(001)" . IEEE Transactions on Magnetics 49, no. 8 (2013) : 4675-4678.
http://dx.doi.org/10.1109/TMAG.2013.2260323
---------- MLA ----------
Helman, C., Llois, A.M. "Strain induced anisotropy change in ultrathin Fe films grown on MnAs(110)/GaAs(001)" . IEEE Transactions on Magnetics, vol. 49, no. 8, 2013, pp. 4675-4678.
http://dx.doi.org/10.1109/TMAG.2013.2260323
---------- VANCOUVER ----------
Helman, C., Llois, A.M. Strain induced anisotropy change in ultrathin Fe films grown on MnAs(110)/GaAs(001). IEEE Trans Magn. 2013;49(8):4675-4678.
http://dx.doi.org/10.1109/TMAG.2013.2260323