Artículo de Acceso Abierto. Puede ser descargado en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Even though substantial progress has been made to elucidate the physiological and environmental factors underpinning differences in body size, little is known about its genetic architecture. Furthermore, all animal species bear a specific relationship between the size of each organ and overall body size, so different body size traits should be investigated as well as their sexual dimorphism that may have an important impact on the evolution of body size. We have surveyed 191 co-isogenic lines of Drosophila melanogaster, each one of them homozygous for a single P-element insertion, and assessed the effects of mutations on different body size traits compared to the P-element-free co-isogenic control. Nearly 60% of the lines showed significant differences with respect to the control for these traits in one or both sexes and almost 35% showed trait- and sex-specific effects. Candidate gene mutations frequently increased body size in males and decreased it in females. Among the 92 genes identified, most are involved in development and/or metabolic processes and their molecular functions principally include protein-binding and nucleic acid-binding activities. Although several genes showed pleiotropic effects in relation to body size, few of them were involved in the expression of all traits in one or both sexes. These genes seem to be important for different aspects related to the general functioning of the organism. In general, our results indicate that the genetic architecture of body size traits involves a large fraction of the genome and is largely sex and trait specific. © 2009 Macmillan Publishers Limited All rights reserved.


Documento: Artículo
Título:Body size in Drosophila: Genetic architecture, allometries and sexual dimorphism
Autor:Carreira, V.P.; Mensch, J.; Fanara, J.J.
Filiación:Departamento de Ecología Genética Y Evolución, Facultad de Ciencias Exactas Y Naturales, Pabellón II, Buenos Aires, Argentina
Departamento de Ecología Genética Y Evolución, Facultad de Ciencias Exactas Y Naturales, Pabellón II, (C1428EHA), Buenos Aires, Argentina
Palabras clave:Allometry; Body size; Drosophila melanogaster; Genetic architecture; P-element mutagenesis; Sexual dimorphism; Drosophila protein; allometry; body size; environmental factor; evolutionary biology; fly; genetics; mutagenicity; sexual dimorphism; animal; article; body size; Drosophila melanogaster; female; gene expression regulation; genetics; male; physiology; quantitative trait; sexual development; Animals; Body Size; Drosophila melanogaster; Drosophila Proteins; Female; Male; Mutagenesis, Insertional; Quantitative Trait, Heritable; Sex Characteristics; Animalia; Drosophila melanogaster
Página de inicio:246
Página de fin:256
Título revista:Heredity
Título revista abreviado:Heredity
CAS:Drosophila Proteins


  • Al-Shahrour, F., Minguez, P., Tárraga, J., Montaner, D., Alloza, E., Vaquerizas, J.M.M., BABELOMICS: A systems biology perspective in the functional annotation of genomescale experiments (2006) Nucleic Acids Res, 34, pp. 472-476
  • Anholt, R.R.H., Dilda, C.L., Chang, S., Fanara, J.J., Kulkarni, N.H., Ganguly, I., The genetic architecture of odorguided behavior in Drosophila: Epistasis and the transcriptome (2003) Nat Genet, 35, pp. 180-184
  • Anholt, R.R.H., Lyman, R.F., Mackay, T.F.C., Effects of single P-element insertions on olfactory behavior in Drosophila melanogaster (1996) Genetics, 143, pp. 293-301
  • Arendt, J., Ecological correlates of body size in relation to cell size and cell number: Patterns in flies, fish, fruits and foliage (2007) Biol Rev Camb Philos Soc, 82, pp. 241-256
  • Bellen, H.J., Levis, R.W., Liao, G., He, Y., Carlson, J.W., Tsang, G., The BDGP gene disruption project: Single transposon insertions associated with 40% of Drosophila genes (2004) Genetics, 167, pp. 761-781
  • Britton, J.S., Lockwood, W.K., Li, L., Cohen, S.M., Edgar, B.A., Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions (2002) Dev Cell, 2, pp. 239-249
  • Caldwell, P.E., Walkiewicz, M., Stern, M., Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release (2005) Curr Biol, 15, pp. 1785-1795
  • Campbell, S.D., Duttaroy, A., Katzen, A.L., Chovnick, A., Cloning and characterization of the scalloped region of Drosophila melanogaster (1991) Genetics, 127, pp. 367-380
  • Cardenas, M.E., Cutler, N.S., Lorenz, M.C., Di Como, C.J., Heitman, J., The TOR signaling cascade regulates gene expression in response to nutrients (1999) Genes Dev, 13, pp. 3271-3279
  • Coleman, K.G., Poole, S.J., Weir, M.P., Soeller, W.C., Kornberg, T., The invected gene of Drosophila: Sequence analysis and expression studies reveal a close kinship to the engrailed gene (1987) Genes Dev, 1, pp. 19-28
  • Colombani, J., Bianchini, L., Layalle, S., Pondeville, E., Dauphin-Villemant, C., Antoniewski, C., Antagonistic actions of ecdysone and insulins determine final size in Drosophila (2005) Science, 310, pp. 667-670
  • Conlon, I., Raff, M., Size control in animal development (1999) Cell, 96, pp. 235-244
  • Cowley, D.E., Atchley, W.R., Rutledge, J.J., Quantitative genetics of Drosophila melanogaster. I. Sexual dimorphism in genetic parameters for wing traits (1986) Genetics, 114, pp. 549-566
  • Cowley, D.E., Atchley, W.R., Development and quantitative genetics of correlation structure among body parts of Drosophila melanogaster (1990) Am Nat, 135, pp. 242-268
  • Cowley, D.E., Atchley, W.R., Quantitative genetics of Drosophila melanogaster. II. Heritabilities and genetic correlations between sexes for head and thorax traits (1988) Genetics, 119, pp. 421-433
  • Cho, K.S., Lee, J.H., Kim, S., Kim, D., Koh, H., Lee, J., Drosophila phosphoinositide-dependent kinase-1 regulates apoptosis and growth via the phosphoinositide 3-kinase-dependent signaling pathway (2001) Proc Natl Acad Sci USA, 98, pp. 6144-6149
  • David, J.R., Araripe, L.O., Bitner-Mathé, B.C., Capy, P., Goñi, B., Klaczko, L.B., Quantitative trait analysis and geographic variability of natural populations of Zaprionus indianus, a recent invader in Brazil (2006) Heredity, 96, pp. 53-62
  • Day, S.J., Lawrence, P.A., Measuring dimensions: The regulation of size and shape (2000) Development, 127, pp. 2977-2987
  • De Jong, G., Bochdanovits, Z., Latitudinal clines in Drosophila melanogaster: Body size, allozyme frequencies, inversion frequencies, and the insulin-signalling pathway (2003) J Genet, 82, pp. 207-223
  • De Moed, G.H., De Jong, G., Scharloo, W., Environmental effects on body size variation in Drosophila melanogaster and its cellular basis (1997) Genet Res, 70, pp. 35-43
  • De Moed, G.H., Kruitwagen, C.L.J.J., De Jong, G., Scharloo, W., Critical weight for the induction of pupariation in Drosophila melanogaster: Genetic and environmental variation (1999) J Evol Biol, 12, pp. 852-858
  • Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S.A., Elucidation of a universal size-control mechanism in Drosophila and mammals (2007) Cell, 130, pp. 1120-1133
  • Dworkin, I., Gibson, G., Epidermal growth factor receptor and transforming growth factor-beta signaling contributes to variation for wing shape in Drosophila melanogaster (2006) Genetics, 173, pp. 1417-1431
  • Edgar, B.A., How flies get their size: Genetics meets physiology (2006) Nat Rev Genet, 7, pp. 907-916
  • Fisher, R.A., (1958) The Genetical Theory of Natural Selection, , Dover Publications: New York
  • Gronke, S., Beller, M., Fellert, S., Ramakrishnan, H., Jackle, H., Kuhnlein, R.P., Control of fat storage by a Drosophila PAT domain protein (2003) Curr Biol, 13, pp. 603-606
  • Hansen, T.F., The evolution of genetic architecture (2006) Annu Rev Ecol Evol Syst, 37, pp. 123-157
  • Harbison, S.T., Yamamoto, A.H., Fanara, J.J., Norga, K.K., Mackay, T.F.C., Quantitative trait loci affecting starvation resistance in Drosophila melanogaster (2004) Genetics, 166, pp. 1807-1823
  • Hennig, K.M., Colombani, J., Neufeld, T.P., TOR coordinates bulk and targeted endocytosis in the Drosophila melanogaster fat body to regulate cell growth (2006) J Cell Biol, 173, pp. 963-974
  • Hwangbo, D.S., Gersham, B., Tu, M.P., Palmer, M., Tatar, M., Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body (2004) Nature, 429, pp. 562-566
  • Johnston, L.A., Gallant, P., Control of growth and organ size in Drosophila (2002) Bioessays, 24, pp. 54-64
  • Kearsey, M.J., Kojima, K., The genetic architecture of body weight and egg hatchability in Drosophila malanogaster (1967) Genetics, 56, pp. 23-37
  • Kramer, J.M., Davidge, J.T., Lockyer, J.M., Staveley, B.E., Expression of Drosophila FOXO regulates growth and can phenocopy starvation (2003) BMC Dev Biol, 3, pp. 5-18
  • Lande, R., Sexual dimorphism, sexual selection, and adaptation in polygenic characters (1980) Evolution, 34, pp. 292-305
  • Loeschcke, V., Bundgaard, J., Barker, J.S.F., Reaction norms across genetic parameters at different temperatures for thorax and wing size traits in Drosophila aldrichi and D. buzzatii (1999) J Evol Biol, 12, pp. 605-623
  • Lukacsovich, T., Asztalos, Z., Awano, W., Baba, K., Kondo, S., Niwa, S., Dual-tagging gene trap of novel genes in Drosophila melanogaster (2001) Genetics, 157, pp. 727-742
  • Lyman, R.F., Lawrence, F., Nuzhdin, S.V., Mackay, T.F.C., Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster (1996) Genetics, 143, pp. 277-292
  • Mensch, J., Lavagnino, N., Carreira, V.P., Massaldi, A., Hasson, E., Fanara, J.J., Identifying candidate genes affecting developmental time in Drosophila melanogaster: Pervasive pleiotropy and gene-by-environment interaction (2008) BMC Dev Biol, 8, p. 78
  • Misra, R.K., Vectorial analysis for genetic clines in body dimensions in populations of Drosophila subobscura Coll. and comparison with those of D. robusta Sturt (1966) Biometrics, 22, pp. 469-487
  • Moreteau, B., Gibert, P., Pétavy, J.C., Huey, R.B., David, J.R., Morphometrical evolution in a Drosophila clade: The Drosophila obscura group (2003) J Zool Syst Evol Res, 41, pp. 64-71
  • Nijhout, H.F., Davidowitz, G., Roff, D.A., A quantitative analysis of the mechanism that controls body size in Manduca sexta (2006) J Biol, 5, pp. 16-30
  • Nijhout, H.F., Emlen, D.J., Competition among body parts in the development and evolution of insect morphology (1998) Proc Natl Acad Sci USA, 95, pp. 3685-3689
  • Nijhout, H.F., The control of body size in insects (2003) Dev Biol, 261, pp. 1-9
  • Norga, K.K., Gurganus, M.C., Dilda, C.L., Yamamoto, A., Lyman, R.F., Patel, P.H., Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development (2003) Curr Biol, 13, pp. 1388-1397
  • Norry, F.M., Vilardi, J.C., Hasson, E., Genetic and phenotypic correlations among size-related traits, and heritability variation between body parts in Drosophila buzzatii (1997) Genetica, 101, pp. 131-139
  • Oldham, S., Hafen, E., Insulin/IGF and target of rapamycin signaling: A TOR de force in growth control (2003) Trends Cell Biol, 13, pp. 79-85
  • Pan, D., Hippo signaling in organ size control (2007) Genes Dev, 2, pp. 886-897
  • Partridge, L., Barrie, B., Fowler, K., French, V., Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature (1994) Evolution, 48, pp. 1269-1276
  • Rice, W.R., Sex chromosomes and the evolution of sexual dimorphism (1984) Evolution, 38, pp. 735-742
  • Roff, D.A., (1992) The Evolution of Life Histories, , Chapman and Hall: New York
  •, Rohlf FJ 2001, tpsDig Free software available at, Release 1.40. Department of Ecology and Evolution, State University of New York: New York; Rohlf, F.J., Sokal, R.R., Comparative morphometrics by factor analysis in two species of Diptera (1972) Z Morphol Tiere, 72, pp. 36-45
  • Rollmann, S.M., Magwire, M.M., Morgan, T.J., Ozsoy, E.D., Yamamoto, A., Mackay, T.F.C., Pleiotropic fitness effects of the Tre1-Gr5a region in Drosophila melanogaster (2006) Nat Genet, 38, pp. 824-829
  • Sambandan, D., Yamamoto, A., Fanara, J.J., Mackay, T.F.C., Anholt, R.R., Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster (2006) Genetics, 174, pp. 1349-1363
  • Saucedo, L.J., Edgar, B.A., Why size matters: Altering cell size (2002) Curr Opin Genet Dev, 12, pp. 565-571
  • Saucedo, L.J., Edgar, B.A., Filling out the Hippo pathway (2007) Nat Rev Mol Cell Biol, 8, pp. 613-621
  • Scheiner, S.M., Caplan, R.L., Lyman, R.F., The genetics of phenotypic plasticity. III. Genetic correlations and fluctuating aymmetries (1991) J Evol Biol, 4, pp. 51-68
  • Schmidt-Nielsen, K., (1984) Scaling: Why is animal size so important, , Cambridge University Press: Cambridge
  • Shingleton, A.W., Das, J., Vinicius, L., Stern, D.L., The temporal requirements for insulin signaling during development in Drosophila (2005) PloS Biol, 3, pp. e289
  • Shingleton, A.W., Frankino, W.A., Flatt, T., Nijhout, H.F., Emlen, D.J., Size and shape: The developmental regulation of static allometry in insects (2007) Bioessays, 29, pp. 536-548
  • Sisodia, S., Singh, B.N., Mating success and morphometric traits in Drosophila ananassae (2001) Curr Sci, 80, pp. 1444-1447
  • (1999) STATISTICA. A Data Analysis Software System, ,
  •, StatSoft Inc 2001, STATISTICA. A Data Analysis Software System Release 6.0. Tulsa, OKhttp; Stearns, S.C., (1992) The Evolution of Life Histories, , Oxford University Press: Oxford
  • Stern, D.L., Emlen, D.J., The developmental basis for allometry in insects (1999) Development, 126, pp. 1091-1101
  • Teixeira, L., Rabouille, C., Rorth, P., Ephrussi, A., Vanzo, N.F., Drosophila perilipin/ADRP homologue Lsd2 regulates lipid metabolism (2003) Mech Dev, 120, pp. 1071-1081
  • Gene Ontology: Tool for the unification of biology (2000) Nat Genet, 25, pp. 25-29. , The Gene Ontology Consortium
  • Trotta, V., Calboli, F.C.F., Ziosi, M., Guerra, D., Pezzoli, M.C., David, J.R., Thermal plasticity in Drosophila melanogaster: A comparison of geographic populations (2006) BMC Evol Biol, 6, pp. 67-79
  • Truman, J.W., Hiruma, K., Allee, J.P., MacWhinnie, S.G.B., Champlin, D.T., Riddiford, L.M., Juvenile hormone is required to couple imaginal disc formation with nutrition in insects (2006) Science, 312, pp. 1385-1388
  • Welte, M.A., Cermelli, S., Griner, J., Viera, A., Guo, Y., Kim, D.H., Regulation of lipid-droplet transport by the perilipin homolog LSD2 (2005) Curr Biol, 15, pp. 1266-1275
  • Wullschleger, S., Loewith, R., Hall, M.N., TOR signaling in growth and metabolism (2006) Cell, 124, pp. 471-484
  • Zhang, H.B., Stallock, J.P., Ng, J.C., Reinhard, C., Neufeld, T.P., Regulation of cellular growth by the Drosophila target of rapamycin dTOR (2000) Genes Dev, 14, pp. 2712-2724


---------- APA ----------
Carreira, V.P., Mensch, J. & Fanara, J.J. (2009) . Body size in Drosophila: Genetic architecture, allometries and sexual dimorphism. Heredity, 102(3), 246-256.
---------- CHICAGO ----------
Carreira, V.P., Mensch, J., Fanara, J.J. "Body size in Drosophila: Genetic architecture, allometries and sexual dimorphism" . Heredity 102, no. 3 (2009) : 246-256.
---------- MLA ----------
Carreira, V.P., Mensch, J., Fanara, J.J. "Body size in Drosophila: Genetic architecture, allometries and sexual dimorphism" . Heredity, vol. 102, no. 3, 2009, pp. 246-256.
---------- VANCOUVER ----------
Carreira, V.P., Mensch, J., Fanara, J.J. Body size in Drosophila: Genetic architecture, allometries and sexual dimorphism. Heredity. 2009;102(3):246-256.