Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this paper we study homogenisation problems for Sobolev trace embedding H1(Ω) Lq(∂Ω) in a bounded smooth domain. When q = 2 this leads to a Steklov-like eigenvalue problem. We deal with the best constant of the Sobolev trace embedding in rapidly oscillating periodic media, and we consider H1 and Lq spaces with weights that are periodic in space. We find that extremals for these embeddings converge to a solution of a homogenised limit problem, and the best trace constant converges to a homogenised best trace constant. Our results are in fact more general; we can also consider general operators of the form aε(x, ∇u) with non-linear Neumann boundary conditions. In particular, we can deal with the embedding W1,p(Ω) Lq(∂Ω). © 2009 Glasgow Mathematical Journal Trust.

Registro:

Documento: Artículo
Título:The best sobolev trace constant in periodic media for critical and subcritical exponents
Autor:Bonder, J.F.; Orive, R.; Rossi, J.D.
Filiación:Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Pabellon I, Buenos Aires, Argentina
Departamento de Matemáticas, Universidad Autonoma de Madrid, Crta. Colmenar Viejo km. 15, 28049 Madrid, Spain
Año:2009
Volumen:51
Número:3
Página de inicio:619
Página de fin:630
DOI: http://dx.doi.org/10.1017/S0017089509990048
Título revista:Glasgow Mathematical Journal
Título revista abreviado:Glasgow. Math. J.
ISSN:00170895
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00170895_v51_n3_p619_Bonder.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00170895_v51_n3_p619_Bonder

Referencias:

  • Adimurthi, S.L., Yadava, S.L., Positive solution for Neumann problem with critical non linearity on boundary (1991) Comm. Partial Diff. Eq., 16 (11), pp. 1733-1760
  • Allaire, G., Homogenization and two-scale convergence (1992) SIAM J. Math. Anal., 23, pp. 1482-1518
  • Aubin ́, T., Equations différentielles non linéaires et le probl̀eme de Yamabe concernant la courbure scalaire (1976) J. Math. Pures Appl., 55, pp. 269-296
  • Bafico, L., Conca, C., Rajesh, M., Homogenization of a class of nonlinear eigenvalue problems (2006) Proc. R. Soc. Edinb., 136 A, p. 722
  • Bensoussan, A., Lions, J.L., Papanicolaou, G., (1978) Asymptotic Analysis for Periodic Structures, , (North-Holland, Amsterdam)
  • Cherrier, P., Probl̀emes de neumann non linéaires sur les variétés Riemanniennes (1984) J. Funct. Anal., 57, pp. 154-206
  • Chiado Piat, V., Dal Maso, G., Defranceschi, A., G-convergence of monotone operators (1990) Ann. Inst. H. Poincaré, 7, pp. 123-160
  • Cioranescu, D., Murat, F., A strange term coming from nowhere, in Topics in the mathematical modelling of composite materials (1997) Progress in Nonlinear Differential Equations and Their Applications, 31, pp. 45-93. , (Cherkaev A. and Kohn R., Editors)(Birkhäuser, Boston)
  • Dal Maso, G., An introduction to -convergence (1993) Progress in Nonlinear Differential Equations and Their Applications, 8. , Birkhäuser, Boston
  • Druet, O., Hebey, E., The AB program in geometric analysis: Sharp Sobolev inequalities and related problems (2002) Mem. Am. Math. Soc., 160, p. 761
  • Escobar, J.F., Sharp constant in a Sobolev trace inequality (1988) Indiana Math. J., 37 (3), pp. 687-698
  • Ferńandez Bonder, J., Lami Dozo, E., Rossi, J.D., Symmetry properties for the extremals of the Sobolev trace embedding (2004) Ann. Inst. H. Poincaré, Anal. Non Linéaire, 21 (6), pp. 795-805
  • Ferńandez Bonder, J., Orive, R., Rossi, J.D., The best Sobolev trace constant in domains with holes for critical or subcritical exponents (2007) ANZIAM J., 49, pp. 213-230
  • Ferńandez Bonder, J., Rossi, J.D., Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains (2002) Comm. Pure Appl. Anal., 1 (3), pp. 359-378
  • Ferńandez Bonder, J., Rossi, J.D., On the existence of extremals for the Sobolev trace embedding theorem with critical exponent (2005) Bull. Lond. Math. Soc., 37 (1), pp. 119-125
  • Li, Y., Zhu, M., Sharp Sobolev Trace Inequalities on Riemannian Manifolds with Boundaries (1997) Communications on Pure and Applied Mathematics, 50 (5), pp. 449-487
  • Lions, J.-L., (1981) Some Methods in the Mathematical Analysis of Systems and Their Control, , Kexue Chubanshe, Beijing, Gordon & Breach, New York
  • Murat, F., Tartar, L., H-convergence, in Topics in the Mathematical Modelling of Composite Materials (1997) Progress in Nonlinear Differential Equations and Their Applications, 31, pp. 21-43. , Cherkaev A. and Kohn R., Editors. (Birkhäuser, Boston)
  • Nguetseng, G., A general convergence result for a functional related to the theory of homogenization (1989) SIAM J. Math. Anal., 20, pp. 608-623
  • Steklov, M.W., Sur les probl̀emes fondamentaux en physique mathématique (1902) Ann. Sci. Ecole Norm. Sup., 19, pp. 455-490

Citas:

---------- APA ----------
Bonder, J.F., Orive, R. & Rossi, J.D. (2009) . The best sobolev trace constant in periodic media for critical and subcritical exponents. Glasgow Mathematical Journal, 51(3), 619-630.
http://dx.doi.org/10.1017/S0017089509990048
---------- CHICAGO ----------
Bonder, J.F., Orive, R., Rossi, J.D. "The best sobolev trace constant in periodic media for critical and subcritical exponents" . Glasgow Mathematical Journal 51, no. 3 (2009) : 619-630.
http://dx.doi.org/10.1017/S0017089509990048
---------- MLA ----------
Bonder, J.F., Orive, R., Rossi, J.D. "The best sobolev trace constant in periodic media for critical and subcritical exponents" . Glasgow Mathematical Journal, vol. 51, no. 3, 2009, pp. 619-630.
http://dx.doi.org/10.1017/S0017089509990048
---------- VANCOUVER ----------
Bonder, J.F., Orive, R., Rossi, J.D. The best sobolev trace constant in periodic media for critical and subcritical exponents. Glasgow. Math. J. 2009;51(3):619-630.
http://dx.doi.org/10.1017/S0017089509990048