Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The proposed mathematical model consists of a first approach to estimate the soil composition from an experimental titration curve and the quantitative analysis of the soil mineral constituents. Mineral mixtures made using different percentages of kaolinite, illite and quartz were used to simulate a natural porous media and evaluate the proposed mathematical model assuming no interaction among the solid components of mixtures. Three soil samples from Argentine provinces collected from surface horizons (0-15 cm depth, horizon A1) and typified as Typic Haplocryoll, Rhodudult and Typic Hapludoll were titrated by successive additions of small volumes of 0.1 M HCl and/or KOH at ionic strength of 10-3, 10-2 and 10-1 M of KCl. Soils are strongly reflective of the individual point of zero charge (PZC) of the soil components. Iron oxides have high PZC values while silica, clays and soil organic matter have low PZC. In these soils, the difference between isoelectric point (IEP) and PZC was used to evaluate the existence of specific adsorption and the soils charge behaviour was fitted using the developed mathematical model. A theoretical titration curve was calculated using the charge density and area fraction of each soil or mineral mixtures components. The experimental and theoretical titration curves present a regression coefficient, R2, higher than 0.95 and a significant p-level p=0.00 for both, soils and mineral mixtures. This model could also be used to interpret the contaminants mobilization in the natural environments, which is dependent of the surface charges and on the mineralogical components of the soils as well as of the chemical interactions among contaminants and soil constituents. © 2003 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Modelling soil surface charge density using mineral composition
Autor:Taubaso, C.; Dos Santos Afonso, M.; Torres Sánchez, R.M.
Filiación:Depto. Quim. Inorg., Analitica Y Q., INQUIMAE, Universidad de Buenos Aires, Argentina
Minerales Y Ceramica, Centro de Tecnologia de Recursos, Cno. Centenario y 506, Gonnet 1897, Argentina
Palabras clave:Charge density; Mathematical model; Mineral mixtures; Soils; Composition; Hydrochloric acid; Ionic strength; Kaolin; Mixtures; Quartz; Silica; Surface chemistry; Illite; Surface charges; Soils; clay mineral; illite; kaolinite; numerical model; quartz; soil chemistry; Argentina; South America; Argentina (fish)
Año:2004
Volumen:121
Número:1-2
Página de inicio:123
Página de fin:133
DOI: http://dx.doi.org/10.1016/j.geoderma.2003.11.005
Título revista:Geoderma
Título revista abreviado:Geoderma
ISSN:00167061
CODEN:GEDMA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00167061_v121_n1-2_p123_Taubaso

Referencias:

  • Allison, L.E., Methods of soil analysis (1965) Organic Carbon, pp. 1367-1378. , C. Black, D. Evans, J. White, L. Emsminger, & F. Clark. Madison, WI: Amer. Soc. of Agronomy
  • Barrer, R.M., (1978) Zeolites and Clays Minerals as Sorbents and Molecular Sieves, , London: Academic Press
  • Bish, D.L., Post, J.E., Quantitative mineralogical analysis using the Rietveld full-pattern fitting method (1993) Am. Mineral., 78, pp. 932-940
  • Block, L., De Bruyn, P., The ionic double layer at the ZnO/solutions interface (1970) J. Colloid Interface Sci., 32, pp. 518-525
  • Blum, A.E., Stillings, L.L., (1995) Chemical Weathering Rates of Silicate Minerals, Ch. Feldspar Dissolution Kinetics Rev. Miner., 31, pp. 291-351. , A.F. White, & S.L. Brantley. Washington: Miner. Soc. America
  • Escudey, M., Galindo, G., Effect of iron oxide coatings on electrophoretic mobility and dispersion of allophane (1983) J. Colloid Interface Sci., 93, pp. 78-83
  • Escudey, M., Galindo, G., Effect of iron oxide dissolution treatment on the isoelectric point of allophane (1986) J. Colloid Interface Sci., 93, pp. 78-83
  • Gillman, G.P., Uehara, G., Charge characteristics of soils with variable and permanent charge minerals: II. Experimental (1980) Soil Sci. Soc. Am. J., 44, pp. 252-255
  • Jackson, J., Removal of free iron oxides from soils of clays (1958) Soil Chem. Analysis, , New York: Prentice-Hall
  • Kunze, G.W., Dixon, J.B., Pretreatment for mineralogical analysis (1986) Methods of Soils Analysis: Part 1. Physical and Mineralogical Methods, pp. 91-100. , A. Klute. Madison, WI: Amer. Soc. of Agronomy
  • Kuo, J.F., Yen, T., Some aspects in predicting the ZPC of a composite oxide system (1988) J. Colloid Interface Sci., 121, pp. 220-225
  • Lamas, M.C., Torres Sánchez, R.M., Isoelectric point of soils determined by the diffusion potential method (1998) Geoderma, 85, pp. 371-381
  • Lemaitre, J., Delannay, F., Van Berge, P., The influence of preparation and doping on the reducibility of hematite by hydrogen (1982) J. Mater. Sci., 17, pp. 607-615
  • Loeppert, R.L., Inskeep, W.P., (1996) Methods of Soil Analysis, Part 3 Iron, pp. 639-664. , D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnson, & M.E. Sumner. Madison, WI: SSSA. Chapter 23
  • Lyklema, J., (1984) Interfacial Electrochemistry of Disperse Systems, pp. 211-234. , Wageningen, The Netherlands: Agricultural University
  • Nelson, D.W., Sommers, I., (1982) Methods of Soil Analysis: Part 2. Chapter Total Carbon, Organic Carbon and Organic Matter Agronomy, 9, pp. 539-579. , USA: Amer. Soc. of Agronomy
  • Newman, A.C., The specific surface of soils determined by water sorption (1983) J. Soil Sci, 34, pp. 23-32
  • Ortiz, A.L., Cumbrera, F.L., Sánchez-Bajo, F., Guiberteau, F., Xu, H., Padture, N.P., Quantitative phase-composition analysis of liquid-phase-sintered silicon carbide using the Rietveld method (2000) J. Am. Ceram. Soc., 83 (9), pp. 2282-2286
  • Parks, G.A., Aqueous surface chemistry of oxides and complex oxide minerals (1967) Adv. Chem. Ser., 67, pp. 121-160
  • Parks, G.A., The IEP of solid oxides, solid hydroxides and aqueous hydroxo complex systems (1968) Chem. Rev., 65, pp. 177-198
  • Pyman, M.A., Bowden, J., Posner, A., The PZC of amorphous coprecipitation of silica with hydroxy aluminium or hydroxy iron (1974) Clay Miner., 14, pp. 86-92
  • Rietveld, H.M., A profile refinement method for nuclear and magnetic structures (1969) J. Appl. Crystallogr., 2, pp. 65-71
  • Rodriguez-Caravajal, J., Fullprof, a program for Rietveld refinements and pattern matching analysis (1990) Abstracts XV of Congress of the IUCr, Toulouse, France, p. 127
  • Sposito, G., (1984) Surface Chemistry of Soils, Chap. the Reactive Solid Surfaces in Soils, p. 30. , New York: Oxford Univ. Press
  • Stumm, W., Hohl, H., Dalang, F., Interaction of metal ions with oxide surfaces (1976) Croat. Chem. Acta, 48, pp. 491-504
  • Taubaso, C., Torres Sánchez, R.M., Dos Santos Afonso, M., Modelado de distribución de cargas en suelos, a partir del estudio de mezclas de sus componentes (1998) Congr. Assoc. Quim. Arg., p. 104. , La Plata
  • Torres Sánchez, R.M., Falasca, S., Specific surface area and surface charges of some Argentinean soils (1997) Z. Pflanzenernähr. Bodenkd., 160, pp. 223-226
  • Torres Sánchez, R.M., Volzone, C., Curt, E.M., Zero point of charge determinations of monoionic montmorillonite (1992) Z. Pflanzenernähr. Bodenkd., 155, pp. 77-79
  • Torres Sánchez, R.M., Okumura, M., Mercader, R., Charge properties of red soils as an indicator of iron oxide/clay associations (2001) Aust. J. Soil Res., 39, pp. 1-12
  • Tschapek, M., Tcheichvili, L., Wasowski, C., The PZC of kaolinite and SiO2+Al2O3 mixtures (1974) Clay Miner., 10, pp. 219-229
  • Tschapek, M., Torres Sánchez, R.M., Wasowski, C., Determination of ZPC by EMF measurements of cell with two junctions (1976) Coll. Polimer. Sci., 254, pp. 514-522
  • Tschapek, M., Torres Sánchez, R.M., Wasowski, C., The ZPC of Al2O3+SiO2 mixtures (1979) An. Edafol. Agrobiol., 37, pp. 589-594
  • Tschapek, M., Torres Sánchez, R.M., Wasowski, C., Handy methods for determining the isoelectric point of soils (1989) Z. Pflanzenernähr. Bodenkd., 152, pp. 73-76
  • Weidler, P., Luster, J., Schneider, J., Sticher, H., Gehring, A., The Rietveld method applied to the quantitative mineralogical and chemical characterization of ferralitic soil (1998) Eur. J. Soil Sci., 49, pp. 95-106
  • Young, R.A., The Rietveld Method (1993) International Union Crystallography, , New York: Oxford Univ. Press

Citas:

---------- APA ----------
Taubaso, C., Dos Santos Afonso, M. & Torres Sánchez, R.M. (2004) . Modelling soil surface charge density using mineral composition. Geoderma, 121(1-2), 123-133.
http://dx.doi.org/10.1016/j.geoderma.2003.11.005
---------- CHICAGO ----------
Taubaso, C., Dos Santos Afonso, M., Torres Sánchez, R.M. "Modelling soil surface charge density using mineral composition" . Geoderma 121, no. 1-2 (2004) : 123-133.
http://dx.doi.org/10.1016/j.geoderma.2003.11.005
---------- MLA ----------
Taubaso, C., Dos Santos Afonso, M., Torres Sánchez, R.M. "Modelling soil surface charge density using mineral composition" . Geoderma, vol. 121, no. 1-2, 2004, pp. 123-133.
http://dx.doi.org/10.1016/j.geoderma.2003.11.005
---------- VANCOUVER ----------
Taubaso, C., Dos Santos Afonso, M., Torres Sánchez, R.M. Modelling soil surface charge density using mineral composition. Geoderma. 2004;121(1-2):123-133.
http://dx.doi.org/10.1016/j.geoderma.2003.11.005