Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Two series of (Al,Mn)-substituted goethites were synthesized from ferrihydrite made in alkaline media, with different Al/Mn mole ratios ([Al + Mn]/Fe molar ratio up to 0.12). Powder X-ray diffraction and extended X-ray absorption fine structure (EXAFS) techniques were used to assess the structural characteristics of the simultaneous substitution in goethite. XRD patterns revealed that all the obtained solids remain in a goethite-like structure. Rietveld refinement of X-ray diffraction data indicates that the increasing Mn substitution and consequent decrease of Al substitution causes an increase in the unit cell volume. This change is accompanied by the increment of the various Me-Me distances. XANES spectra at the Al and Mn K-edge confirm the octahedral coordination of Al and the trivalent oxidation state of the Mn ion in all the synthesized samples. EXAFS spectra at the Fe K-edge indicate that the local order around the Fe atom remains practically constant upon (Mn,Al) substitution. Measurements in the Mn K-edge show that distances Mn-Me suffer different changes with the increase in Mn substitution: a marked decrease in E and a slight decrease in E′, while DC remains constant. E and E′ values correspond to the distance between one Mn and one neighboring Me (Fe, Mn, Al) atom, both situated in two polyhedra linked by an edge. These polyhedra belong to the same double row of the goethite structure. DC value corresponds to the distance between one Mn and one Me (Fe, Mn, Al) atom, situated in two octahedral linked by one corner and belonging to two adjacent double chains. All the intermetallic distances are minor than the corresponding singly substituted goethites, this fact is attributed to the structure contraction due to the presence of Al(III) which restrains the axial distortion of Mn. Dissolution-time curves, resulting from exposure to 6 M HCl at 318 K, show that the dissolution rate slows with increasing Al substitution and consequent decrease of Mn substitution, and the shape of the curve becomes increasingly sigmoidal for mixed goethite with large Al content and Al-goethite. Dissolution kinetics of most samples are well described by the Kabai equation. Al dissolves almost congruently with respect to Fe, implying that it is homogeneously distributed in the structure. However, the convex χMn:χFe curve indicates that Mn tends to be concentrated in the outer layers of the goethite particles. © 2006 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Simultaneous incorporation of Mn and Al in the goethite structure
Autor:Alvarez, M.; Rueda, E.H.; Sileo, E.E.
Filiación:Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina
INQUIMAE, Dpto. de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon II, C1428EHA, Buenos Aires, Argentina
Palabras clave:aluminum; crystal structure; goethite; manganese; Rietveld analysis; X-ray diffraction
Año:2007
Volumen:71
Número:4
Página de inicio:1009
Página de fin:1020
DOI: http://dx.doi.org/10.1016/j.gca.2006.11.012
Título revista:Geochimica et Cosmochimica Acta
Título revista abreviado:Geochim. Cosmochim. Acta
ISSN:00167037
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00167037_v71_n4_p1009_Alvarez

Referencias:

  • Abbate, M., Vicentin, F.C., Compagnon-Caihol, V., Rocha, M.C., Tolentino, H., The soft X-ray spectroscopy beamline at the LNLS: technical description and commissioning results (1999) J. Synchrotron Radiat., 6, pp. 964-972
  • Alvarez, M., Sileo, E.E., Rueda, E.H., Effect of Mn(II) incorporation on the transformation of ferrihydrite to goethite (2005) Chem. Geol., 216, pp. 89-97
  • Alvarez, M., Rueda, E.H., Sileo, E.E., Structural characterization and chemical reactivity of synthetic Mn-goethites and hematites (2006) Chem. Geol., 231, pp. 288-299
  • Bousserrhine, N., Gasser, U.G., Jeanroy, E., Berthelin, J., Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and Al-substituted goethites (1999) Geomicrobiol. J., 16, pp. 245-258
  • Carlson, L., Aluminum substitution in goethite in lake ore (1995) Bull. Geol. Soc. Finland, 67, pp. 19-28
  • Carvalho-e-Silva, M.L., Ramos, A.Y., Tolentino, H.C., Enzweiler, J., Netto, S.M., Martin Alves, M.C., Incorporation of Ni into natural goethite: an investigation by X-ray absorption spectroscopy (2003) Am. Mineral., 88, pp. 876-882
  • Charlet, L., Manceau, A., X-Ray absorption spectroscopic study of the sorption of the Cr(III) at the oxide-water interface (1991) J. Colloid Interface Sci., 148, pp. 443-458
  • Cornell, R.M., Simultaneous incorporation of Mn, Ni and Co in the goethite (α-FeOOH) structure (1991) Clay Min., 26, pp. 427-430
  • Cornell, R.M., Giovanoli, R., Effect of manganese on the transformation of ferrihydrite into goethite and jacobsite in alkaline media (1987) Clays Clay Min., 35, pp. 11-20
  • Cornell, R.M., Giovanoli, R., The influence of copper on the transformation of ferrihydrite (5Fe2O3·9H2O) intro crystalline products in alkaline media (1988) Polyhedron, 7, pp. 385-391
  • Cornell, R.M., Giovanoli, R., Acid dissolution of hematites of different morphologies (1993) Clay Min., 28, pp. 223-232
  • Cornell, R.M., Schwertmann, U., (1996) The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, , VCH
  • Dent-Glasser, L.S., Ingram, L., Refinement of the crystal structure of groutite, α-MnOOH (1968) Acta Crystallogr. B, 24, pp. 1233-1236
  • Ebinger, M.H., Schulze, D.G., Mn-substituted goethite and Fe-substituted groutite synthesized at acid pH (1989) Clays Clay Min., 37, pp. 151-156
  • Fazey, P.G., O'Connor, B.H., Hammond, L.C., X-ray powder diffraction Rietveld characterization of synthetic aluminium-substituted goethite (1991) Clays Clay Min., 39, pp. 248-253
  • Fey, M.B., Dixon, J.B., Synthesis and properties of poorly crystalline hydrated aluminous goethites (1981) Clays Clay Min., 29, pp. 91-100
  • Fitzpatrick, R.W., Schwertmann, U., Al-substituted goethite - an indicator of pedogenic and other weathering environments in South Africa (1982) Geoderma, 27, pp. 335-347
  • Fonseca, E.C., Martin, H., The selective extraction of Pb and Zn in selected mineral and soil samples. Application in geochemical exploration (Portugal) (1986) J. Geochem. Explor., 26, pp. 231-248
  • Ford, R.G., Bertsch, P.M., Farley, K.J., Changes in transition and heavy metal partitioning during hydrous iron oxide aging (1997) Environ. Sci. Technol., 31, pp. 2028-2033
  • Gasser, U.G., Nüesch, R., Singer, M.J., Jeanroy, E., Distribution of Mn in synthetic goethite (1999) Clay Min., 34, pp. 291-299
  • Giovanoli, R., Cornell, R.M., Crystallization of metal-substituted ferrihydrites (1992) Z. Pflanzenernähr. Bodenk., 129, pp. 63-77
  • Huynh, T., Tong, A.R., Singh, B., Kennedy, B., Cd-substituted goethites - a structural investigation by synchrotron X-ray diffraction (2003) Clays Clay Min., 51, pp. 397-402
  • Ildefonse, Ph., Cabaret, D., Sainctavit, Ph., Calas, G., Flank, A.-M., Lagarde, P., Aluminum X-ray absorption near edge structure in model compounds and Earth's surface minerals (1998) Phys. Chem. Miner., 25, pp. 112-121
  • Kabai, J., Determination of specific activation energies of metal oxides and metal oxide hydrates by measurement of the rate of dissolution (1973) Acta Chem. Acad. Sci. Hung, 78, pp. 57-73
  • Kühnel, R.A., Roorda, H.J., Steensma, J.J.S., Distribution and partitioning of elements in nickeliferous laterites (1978) Bull, BRGM II, 3, pp. 191-206
  • Lim-Nuñez, R.S.L., Gilkes, R.J., Acid dissolution of synthetic metal-containing goethites and hematites (1987) Proc. Int. Clay Conf. Denver, pp. 197-204
  • Manceau, A., Drits, V.A., Local structure of ferrihydrite and feroxyhyte by EXAFS spectroscopy (1993) Clay Min., 28, pp. 165-184
  • Manceau, A., Schlegel, M.L., Musso, M., Sole, V.A., Gauthier, C., Petit, P.E., Trolard, F., Crystal chemistry of trace elements in natural and synthetic goethite (2000) Geochim. Cosmochim. Acta, 64, pp. 3643-3661
  • Norrish, K., Taylor, R.M., The isomorphous replacement of iron by aluminium in soil goethites (1961) J. Soil Sci., 12, pp. 294-306
  • Rehr, J.J., Mustre de Leon, J., Zabinski, S.I., Albers, R.C., Theoretical X-ray absorption fine structure standards (1991) J. Am. Chem. Soc., 113, pp. 5135-5145
  • Ressler, T., Winxas: a new software package not only for the analysis of energy-dispersive XAS data (1997) J. Phys. IV, 7 (C2), pp. 269-270
  • Scheinost, A.C., Stanjek, H., Schulze, D.G., Gasser, U., Sparks, D.L., Structural environment and oxidation state of Mn in goethite-groutite solid-solutions (2001) Am. Miner., 86, pp. 139-146
  • Schulze, D.G., The influence of aluminium on iron oxides. VIII. Unit-cell dimensions of Al-substituted goethites and estimation of Al from them (1984) Clays Clay Min., 32, pp. 36-44
  • Schwertmann, U., Differenzierung der Eisenoxides des Bodens durch Extraktion mit einer Ammoniumoxalat-Lösung (1964) Z. Pflanzenernähr. Düng Bodenkd., 105, pp. 194-202
  • Schwertmann, U., Carlson, L., Aluminium influence on iron oxides: XVII. Unit-cell parameters and aluminium substitution of natural goethites (1994) Soil Sci. Soc. Am. J., 58, pp. 1293-1297
  • Schwertmann, U., Latham, M., Properties of iron oxides in some New Caledonian Soils (1986) Geoderma, 39, pp. 105-123
  • Sileo, E.E., Alvarez, M., Rueda, E.H., Structural studies on the manganese for iron substitution in the goethite-jacobsite system (2001) Int. J. Inorg. Mat., 3, pp. 271-279
  • Sileo, E.E., Paiva-Santos, C., Solís, P.S., Structural study of a series of synthetic goethites obtained in aqueous solutions containing cadmium(II) ions (2003) Powder Diffract., 18, pp. 50-55
  • Sileo, E.E., Ramos, A.Y., Magaz, G.E., Blesa, M.A., Long-range vs. short-range ordering in synthetic Cr-substituted goethites (2004) Geochim. Cosmochim. Acta, 68, pp. 3053-3063
  • Singh, B., Gilkes, R.J., Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia (1992) J. Soil Sci., 43, pp. 77-98
  • Singh, B., Sherman, D.M., Gilkes, R.J., Wells, M., Mosselmans, J.F.W., Incorporation of Cr, Mn and Ni into goethite (α-FeOOH): Mechanism from Extended X-ray Absorption Fine Structure Spectroscopy (2002) Clay Min., 37, pp. 639-649
  • Stiers, W., Schwertmann, U., Evidence for manganese substitution in synthetic goethite (1985) Geochim. Cosmochim. Acta, 49, pp. 1909-1911
  • Sudakar, C., Subbanna, G.N., Kutty, T.R.N., Effect of cationic substituents on particle morphology of goethite and the magnetic properties of maghemite derived from substituted goethite (2004) J. Mater. Sci., 39, pp. 4271-4286
  • Szytula, A., Burewicz, A., Dimitrijevic, Z., Krasnicki, S., Rzany, H., Todorovic, J., Wanic, A., Wolski, W., Neutron diffraction studies of α-FeOOH (1968) Phys. Stat. Sol., 26, pp. 429-434
  • Thompson, P., Cox, D.E., Hastings, J.B., Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 (1987) J. Appl. Crystallogr., 20, pp. 79-83
  • Tolentino, H.C.N., Ramos, A.Y., Alves, M.C.M., Barrea, R.A., Tamura, E., Cezar, J.C., Watanabe, N., A 2.3 to 25 keV XAS beam line at the LNLS (2001) J. Synchrotron. Radiat., 8 (3), pp. 1040-1046
  • Triverdi, P., Dyer, J.A., Sparks, D.L., Pandya, K., Mechanisms and thermodynamic interpretations of zinc sorption onto ferrihydrite (2004) J. Colloid Interface Sci., 270, pp. 77-85
  • Trolard, F., Francois, M., Martin, H., Localisation des elements-traces et contrôle cinetique de la dissolution selective de phases minerals dans les latérites (1989) C.R. Acad. Sci. Paris, 308, pp. 401-406
  • Vandenberghe, R.E., Verbeeck, A.E., DeGrave, E., Stiers, W., 57Fe Mössbauer effect study of Mn-substituted goethite and hematite (1986) Hyperfine Interact., 29, pp. 1157-1160
  • Vempati, R.K., Morris, R.V., Lauer, H.V., Helmke, P.A., Reflectivity and other physicochemical properties of Mn-substituted goethites and hematites (1995) J. Geophys. Res., 100, pp. 3285-3295
  • Wong, J., Lytle, F.W., Messmer, R.P., Maylotte, D.H., K-edge absorption spectra of selected vanadium compounds (1984) Phys. Rev., B30, pp. 5596-6510

Citas:

---------- APA ----------
Alvarez, M., Rueda, E.H. & Sileo, E.E. (2007) . Simultaneous incorporation of Mn and Al in the goethite structure. Geochimica et Cosmochimica Acta, 71(4), 1009-1020.
http://dx.doi.org/10.1016/j.gca.2006.11.012
---------- CHICAGO ----------
Alvarez, M., Rueda, E.H., Sileo, E.E. "Simultaneous incorporation of Mn and Al in the goethite structure" . Geochimica et Cosmochimica Acta 71, no. 4 (2007) : 1009-1020.
http://dx.doi.org/10.1016/j.gca.2006.11.012
---------- MLA ----------
Alvarez, M., Rueda, E.H., Sileo, E.E. "Simultaneous incorporation of Mn and Al in the goethite structure" . Geochimica et Cosmochimica Acta, vol. 71, no. 4, 2007, pp. 1009-1020.
http://dx.doi.org/10.1016/j.gca.2006.11.012
---------- VANCOUVER ----------
Alvarez, M., Rueda, E.H., Sileo, E.E. Simultaneous incorporation of Mn and Al in the goethite structure. Geochim. Cosmochim. Acta. 2007;71(4):1009-1020.
http://dx.doi.org/10.1016/j.gca.2006.11.012