Artículo

Jones, R.E.; Kirstein, L.A.; Kasemann, S.A.; Dhuime, B.; Elliott, T.; Litvak, V.D.; Alonso, R.; Hinton, R.; Edinburgh Ion Microprobe Facility (EIMF) "Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon" (2015) Geochimica et Cosmochimica Acta. 164:386-402
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Subduction zones, such as the Andean convergent margin of South America, are sites of active continental growth and crustal recycling. The composition of arc magmas, and therefore new continental crust, reflects variable contributions from mantle, crustal and subducted reservoirs. Temporal (Ma) and spatial (km) variations in these contributions to southern Central Andean arc magmas are investigated in relation to the changing plate geometry and geodynamic setting of the southern Central Andes (28-32°S) during the Cenozoic. The in-situ analysis of O and Hf isotopes in zircon, from both intrusive (granitoids) and extrusive (basaltic andesites to rhyolites) Late Cretaceous - Late Miocene arc magmatic rocks, combined with high resolution U-Pb dating, demonstrates distinct across-arc variations. Mantle-like δ18O(zircon) values (+5.4‰ to +5.7‰ (±0.4 (2σ))) and juvenile initial εHf(zircon) values (+8.3 (±0.8 (2σ)) to +10.0 (±0.9 (2σ))), combined with a lack of zircon inheritance suggests that the Late Cretaceous (~73Ma) to Eocene (~39Ma) granitoids emplaced in the Principal Cordillera of Chile formed from mantle-derived melts with very limited interaction with continental crustal material, therefore representing a sustained period of upper crustal growth. Late Eocene (~36Ma) to Early Miocene (~17Ma) volcanic arc rocks present in the Frontal Cordillera have 'mantle-like' δ18O(zircon) values (+4.8‰ (±0.2 (2σ) to +5.8‰ (±0.5 (2σ))), but less radiogenic initial εHf(zircon) values (+1.0 (±1.1 (2σ)) to +4.0 (±0.6 (2σ))) providing evidence for mixing of mantle-derived melts with the Late Paleozoic - Early Mesozoic basement (up to ~20%). The assimilation of both Late Paleozoic - Early Mesozoic Andean crust and a Grenville-aged basement is required to produce the higher than 'mantle-like' δ18O(zircon) values (+5.5‰ (±0.6 (2σ) to +7.2‰ (±0.4 (2σ))) and unradiogenic, initial εHf(zircon) values (-3.9 (±1.0 (2σ)) to +1.6 (±4.4 (2σ))), obtained for the Late Oligocene (~23Ma) to Late Miocene (~9Ma) magmatic rocks located in the Argentinean Precordillera, and the Late Miocene (~6Ma) volcanic rocks present in the Frontal Cordillera. The observed isotopic variability demonstrates that the assimilation of pre-existing continental crust, which varies in both age and composition over the Andean Cordillera, plays a dominant role in modifying the isotopic composition of Late Eocene to Late Miocene mantle-derived magmas, implying significant crustal recycling. The interaction of arc magmas with distinct basement terranes is controlled by the migration of the magmatic arc due to the changing geodynamic setting, as well as by the tectonic shortening and thickening of the Central Andean crust over the latter part of the Cenozoic. © 2015 The Authors.

Registro:

Documento: Artículo
Título:Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon
Autor:Jones, R.E.; Kirstein, L.A.; Kasemann, S.A.; Dhuime, B.; Elliott, T.; Litvak, V.D.; Alonso, R.; Hinton, R.; Edinburgh Ion Microprobe Facility (EIMF)
Filiación:School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JW, United Kingdom
Department of Geosciences and MARUM, Centre for Marine Environmental Sciences, University of Bremen, Bremen, 28334, Germany
School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, United Kingdom
Instituto de Estudios Andinos Don Pablo Groeber, Departamento de Ciencias Geológicas, Universidad de Buenos Aires, CONICET, Argentina
Departamento de Geología, Universidad Nacíonal de Salta, CONICET, Salta, 4400, Argentina
Palabras clave:Cenozoic; continental crust; crustal contamination; crustal recycling; geodynamics; isotopic composition; magma chemistry; structural control; zircon; Andes; Argentina; Chile; Precordillera
Año:2015
Volumen:164
Página de inicio:386
Página de fin:402
DOI: http://dx.doi.org/10.1016/j.gca.2015.05.007
Título revista:Geochimica et Cosmochimica Acta
Título revista abreviado:Geochim. Cosmochim. Acta
ISSN:00167037
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00167037_v164_n_p386_Jones

Referencias:

  • Abbruzzi, J., Kay, S.M., Bickford, M.E., Implications for the nature of the Precordilleran basement from the geochemistry and age of Precambrian xenoliths in Miocene volcanic rocks, San Juan province (1993) Actas, 3, pp. 331-339
  • Allègre, C.J., Rousseau, D., The growth of the continent through geological time studied by Nd isotope analysis of shales (1984) Earth Planet. Sci. Lett., 67, pp. 19-34
  • Allmendinger, R.W., Figueroa, D., Snyder, D., Beer, J., Mpodozis, C., Isacks, B.L., Foreland shortening and crustal balancing in the Andes at 30°S latitude (1990) Tectonics, 9, pp. 789-809
  • Bangs, N.L., Cande, S.C., Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin (1997) Tectonics, 16, pp. 489-503
  • Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O'Reilly, S.Y., Pearson, N.J., The growth of the continental crust: constraints from zircon Hf-isotope data (2010) Lithos, 119, pp. 457-466
  • Bissig, T., Lee, J.K.W., Clark, A.H., Heather, K.B., The Cenozoic History of Volcanism and Hydrothermal Alteration in the Central Andean Flat-Slab Region: new 40Ar-39Ar Constraints from the El Indio-Pascua Au (-Ag, Cu) Belt, 29°20'-30°30'S (2001) Int. Geol. Rev., 43, pp. 312-340
  • Bissig, T., Clark, A.H., Lee, J.K., von Quadt, A., Petrogenetic and metallogenetic responses to Miocene slab flattening: new constraints from the El Indio-Pascua Au-Ag-Cu belt, Chile/Argentina (2003) Miner. Deposita, 38, pp. 844-862
  • Bouvier, A., Vervoort, J.D., Patchett, P.J., The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets (2008) Earth Planet. Sci. Lett., 273, pp. 48-57
  • Cardó, R., Díaz, I.N., Hoja Geológica 3169-I, Rodeo, provincias de San Juan (1999), Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Buenos Aires; Cardó, R., Díaz, I.N., Limarino, C.O., Litvak, V.D., Poma, S., Santamaria, G., Hoja Geológica 2969-III, Malimán, provincias de San Juan y La Rioja, Boletín 320 ed (2007), Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Buenos Aires; Charchaflié, D., Tosdal, R.M., Mortensen, J.K., Geologic framework of the Veladero high-sulfidation epithermal deposit area, Cordillera Frontal, Argentina (2007) Econ. Geol., 102, pp. 171-192
  • Charrier, R., Pinto, L., Rodríguez, M.P., Tectonostratigraphic evolution of the Andean Orogen in Chile (2007) The Geology of Chile, pp. 21-114. , The Geological Society, London, T. Moreno, W. Gibbons (Eds.)
  • Clayton, R.N., O'Neil, J.R., Mayeda, T.K., Oxygen isotope exchange between quartz and water (1972) J. Geophys. Res., 77, pp. 3057-3067
  • Clift, P.D., Hartley, A.J., Slow rates of subduction erosion and coastal underplating along the Andean margin of Chile and Peru (2007) Geology, 35, pp. 503-506
  • Davidson, J.P., Harmon, R.S., Wörner, G., The source of central Andean magmas; Some considerations (1991) Geolog. Soc. Am., 265, pp. 233-244. , Special Papers
  • DeCelles, P.G., Ducea, M.N., Kapp, P., Zandt, G., Cyclicity in Cordilleran orogenic systems (2009) Nat. Geosci., 2, pp. 251-257
  • Dhuime, B., Hawkesworth, C., Cawood, P., When continents formed (2011) Science, 331, pp. 154-155
  • Dhuime, B., Hawkesworth, C.J., Cawood, P.A., Storey, C.D., A change in the geodynamics of continental growth 3billion years ago (2012) Science, 335, pp. 1334-1336
  • Eiler, J.M., Oxygen isotope variations of basaltic lavas and upper mantle rocks (2001) Rev. Mineral. Geochem., 43, pp. 319-364
  • Emparan, C., Pineda, G., Area Condoriaco-Rivadavia, Región de Coquimbo (1999), Servicio Nacional de Geologia y Mineria, Mapas Geológicos, Santiago; Gans, C.R., Beck, S.L., Zandt, G., Gilbert, H., Alvarado, P., Anderson, M., Linkimer, L., Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results (2011) Geophys. J. Int., 186, pp. 45-58
  • Gilbert, H., Beck, S., Zandt, G., Lithospheric and upper mantle structure of central Chile and Argentina (2006) Geophys. J. Int., 165, pp. 383-398
  • Gill, J.B., (1981) Orogenic Andesites and Plate Tectonics, , Springer-Verlag, New York
  • Goss, A.R., Kay, S.M., Mpodozis, C., Andean Adakite-like high-Mg Andesites on the Northern Margin of the Chilean-Pampean Flat-slab (27-28· 5°S) associated with Frontal Arc Migration and Fore-arc Subduction Erosion (2013) J. Petrol., 54, pp. 2193-2234
  • Haschke, M., Siebel, W., Günther, A., Scheuber, E., Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21°-26°S) (2002) J. Geophys. Res. Solid Earth, 107. , ECV 6-1-ECV 6-18
  • Hawkesworth, C.J., Kemp, A.I.S., Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution (2006) Chem. Geol., 226, pp. 144-162
  • Heit, B., Yuan, X., Bianchi, M., Sodoudi, F., Kind, R., Crustal thickness estimation beneath the southern central Andes at 30°S and 36°S from S wave receiver function analysis (2008) Geophys. J. Int.
  • Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., (2008), Hole-filled SRTM for the globe Version 4, Available from the CGIAR-CSI SRTM 90m Database; Jones, R.E., (2014) Subduction zone processes and continental crust formation in the southern Central Andes: Insights from geochemistry and geochronology, , School of GeoSciences, The University of Edinburgh, Edinburgh
  • Jones, R.E., De Hoog, J.C.M., Kirstein, L.A., Kasemann, S.A., Hinton, R., Elliott, T., Litvak, V.D., Temporal variations in the influence of the subducting slab on Central Andean arc magmas: evidence from boron isotope systematics (2014) Earth Planet. Sci. Lett., 408, pp. 390-401
  • José Frutos, J., Paula Cornejo, P., Tomlinson, A., Arturo Hauser, Y., Carlos Portigliati, N., Aníbal Gajardo, C., Estanislao Godoy, P.-B., Renate Wall, Z., (2004), Mapa Geológico de Chile: versión digital, Carta Geológica de Chile, Serie Geología Básica, CD-ROM, versión 1.0, 2004 ed. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Santiago; Kay, S.M., Abbruzzi, J.M., Magmatic evidence for Neogene lithospheric evolution of the central Andean "flat slab" between 30°S and 32°S (1996) Tectonophysics, 259, pp. 15-28
  • Kay, S.M., Mpodozis, C., Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust (2001) GSA Today, 11, pp. 4-9
  • Kay, S.M., Mpodozis, C., Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat slab (2002) J. South Am. Earth Sci., 15, pp. 39-57
  • Kay, S.M., Orrell, S., Abbruzzi, J., Zircon and whole rock Nd-Pb isotopic evidence for a Grenville age and a Laurentian origin for the basement of the Precordillera in Argentina (1996) J. Geol., pp. 637-648
  • Kay, S.M., Mpodozis, C., Coira, B., Neogene magmatism, tectonism, and mineral deposits of the Central Andes (22 to 33S latitude) (1999), pp. 27-59. , In Geology and Ore Deposits of the Central Andes (ed. B.J. Skinner). Society of Economic Geologists, Special Publication 7; Kay, S.M., Godoy, E., Kurtz, A., Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes (2005) Geol. Soc. Am. Bull., 117, pp. 67-88
  • Kay, S.M., Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Probing the evolving Andean lithosphere; Mid - Late Tertiary magmatism in Chile (29°-30°30'S) over the modern zone of subhorizontal subduction (1987) J. Geophys. Res., 92, pp. 6173-6189
  • Kay, S.M., Ramos, V.A., Mpodozis, C., Sruoga, P., Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: analogy to the Middle Proterozoic in North America? (1989) Geology, 17, pp. 324-328
  • Kay, S.M., Mpodozis, C., Ramos, V.A., Munizaga, F., Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and the thickening crust in the Central Andes (28-33°S) (1991) Spec. Pap. Geol. Soc. Am. Bull., 265, pp. 113-137
  • Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., Kinny, P.D., Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon (2006) Nature, 439, pp. 580-583
  • Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M., Whitehouse, M.J., Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon (2007) Science, 315, pp. 980-983
  • Kinny, P.D., Maas, R., Lu-Hf and Sm-Nd isotope systems in zircon (2003) Zircon: Reviews in Mineralogy and Geochemistry, pp. 327-339. , Mineralogical Society of America/Geochemical Society, Washington DC, J.M. Hanchar, P.W.O. Hoskin (Eds.)
  • Kley, J., Monaldi, C.R., Tectonic shortening and crustal thickness in the Central Andes: how good is the correlation? (1998) Geology, 26, pp. 723-726
  • Kurtz, A.C., Kay, S.M., Charrier, R., Farrar, E., Geochronology of Miocene plutons and exhumation history of the El Teniente region, Central Chile (34-35° 8) (1997) Andean Geol., 24, pp. 75-90
  • Laursen, J., Scholl, D.W., von Huene, R., Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction (2002) Tectonics, 21, p. 1038
  • Litvak, V.D., Poma, S., Kay, S.M., Paleogene and Neogene magmatism in the Valle del Cura region: new perspective on the evolution of the Pampean flat slab, San Juan province, Argentina (2007) J. South Am. Earth Sci., 24, pp. 117-137
  • Lonsdale, P., Creation of the Cocos and Nazca plates by fission of the Farallon plate (2005) Tectonophysics, 404, pp. 237-264
  • Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Las unidades volcánicas y plutónicas del Cenozoico superior en la alta cordillera del Norte Chico (29-31S): Geología, alteración hidrotermal y mineralización (1984) Rev. Geol. Chile, pp. 11-51
  • Maksaev, V., Zentilli, M., Munizaga, F., Charrier, R., (2003), Denudación/alzamiento del Mioceno Superior-Plioceno Inferior de la Cordillera de Chile Central (33°-35°S) inferida por dataciones por trazas de fisión en apatito de plutones miocenos, Congreso Geológico Chileno; Marfil, S., Maiza, P., Geochemistry of hydrothermal alteration in volcanic rocks (2012), In Geochemistry - Earth's System Processes (ed. D. Panagiotaras); McCarthy, T.S., Hasty, R.A., Trace element distribution patterns and their relationship to the crystallization of granitic melts (1976) Geochim. Cosmochim. Acta, 40, pp. 1351-1358
  • Mpodozis, C., Cornejo, P.P., Hoja Pisco Elqui, Region de Coquimbo (1988) Carta Geologica de Chile, , Servicio Nacional de Geología y Minería (SERNAGEOMIN), Santiago, C. Mpodozis, J. Davidson, S. Rivano (Eds.)
  • Muñoz, M., Farías, M., Charrier, R., Fanning, C.M., Polvé, M., Deckart, K., Isotopic shifts in the Cenozoic Andean arc of central Chile: records of an evolving basement throughout cordilleran arc mountain building (2013) Geology, 41, pp. 931-934
  • Nasi, C., Moscoso, R., Maksaev, V., Hoja Guanta Regiones de Atacama y Coquimbo (1990) Carta Geologica de Chile, , Servicio Nacional de Geología y Minería (SERNAGEOMIN), Santiago, C. Mpodozis, J. Davidson, S. Rivano (Eds.)
  • Parada, M.A., Granitoid plutonism in central Chile and its geodynamic implications; a review (1990) Plutonism from Antarctica to Alaska, , The Geological Society of America, Boulder, Colorado, S.M. Kay, C.W. Rapela (Eds.)
  • Parada, M.A., Rivano, S., Sepulveda, P., Herve, M., Herve, F., Puig, A., Munizaga, F., Snelling, N., Mesozoic and Cenozoic plutonic development in the Andes of central Chile (30°30'-32°30'S) (1988) J. South Am. Earth Sci., 1, pp. 249-260
  • Pardo Casas, F., Molnar, P., Relative motion of the Nazca (Farallón) and South America plates since Late Cretaceous time (1987) Tectonics, 6, pp. 233-248
  • Patchett, J.P., Kouvo, O., Hedge, C., Tatsumoto, M., Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes (1982) Contrib. Mineral. Petrol., 78, pp. 279-297
  • Peck, W.H., Valley, J.W., Graham, C.M., Slow oxygen diffusion rates in igneous zircons from metamorphic rocks (2003) Am. Mineral., 88, pp. 1003-1014
  • Pichowiak, S., Buchelt, M., Damm, K., Magmatic activity and tectonic setting of the early stages of the Andean cycle in northern Chile (1990), pp. 127-144. , In: Plutonism from Antarctica to Alaska (eds, S.M. Kay, C.W. Rapela) Geological Society of America, Special Paper 241; Pilger, R.H., Plate reconstructions, aseismic ridges, and low angle subduction beneath the Andes (1981) Geol. Soc. Am. Bull., 92, pp. 448-456
  • Pilger, R.H., Cenozoic plate kinematics, subduction and magmatism: South American Andes (1984) J. Geol. Soc. Lond., 141, pp. 793-802
  • Pineda, G., Emparan, C., Geología del área Vicuña-Pichasca, Región de Coquimbo, Carta Geológica de Chile, Serie Geología Básica Servicio Nacional de Geología y Minería, Santiago. (2006); Pineda, G., Calderón, M., (2008), Geología del área Monte Patria-El Maqui, Región de Coquimbo, Carta Geológica de Chile, Serie Geología Básica. Servicio Nacional de Geología y Minería, Santiago; Plank, T., Langmuir, C.H., The chemical composition of subducting sediment and its consequences for the crust and mantle (1998) Chem. Geol., 145, pp. 325-394
  • Ramos, V.A., The Grenville-age basement of the Andes (2010) J. South Am. Earth Sci., 29, pp. 77-91
  • Ramos, V.A., Cristallini, E., Pérez, D.J., The Pampean flat-slab of the Central Andes (2002) J. South Am. Earth Sci., 15, pp. 59-78
  • Ramos, V.A., Jordan, T.E., Allmendinger, R.W., Mpodozis, C., Kay, S.M., Cortés, J.M., Palma, M., Paleozoic terranes of the central Argentine-Chilean Andes (1986) Tectonics, 5, pp. 855-880
  • Ramos, V.A., Zapata, T., Cristallini, E., Introcaso, A., The Andean thrust system-latitudinal variations in structural styles and orogenic shortening (2004) Thrust Tectonics Hydrocarbon Syst., 82, pp. 30-50
  • Rutland, R.W.R., Andean orogeny and ocean floor spreading (1971) Nature, 233, pp. 252-255
  • Rudnick, R.L., Making continental crust (1995) Nature, 378, pp. 573-578
  • Savin, S.M., Epstein, S., The oxygen and hydrogen isotope geochemistry of clay minerals (1970) Geochim. Cosmochim. Acta, 34, pp. 25-42
  • Scholl, D.W., von Huene, R., Crustal recycling at modern subduction zones applied to the past-issues of growth and preservation of continental basement crust, mantle geochemistry and supercontinent reconstruction (2007) 4-D Framework of Continental Crust, pp. 9-32. , Geological Society of America Memoir, R.D. Hatcher, M.P. Carlson, J.H. McBride, J.R.M. Catalán (Eds.)
  • Scholl, D.W., von Huene, R., Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens (2009) Earth Accretionary Systems in Space and Time, pp. 105-125. , Geological Society, London, Special Publications, P.A. Cawood, A. Kröner (Eds.)
  • Somoza, R., Updated Nazca (Farallon)-South America relative motions during the last 40My: implications for mountain building in the central Andean region (1998) J. South Am. Earth Sci., 11, pp. 211-215
  • Somoza, R., Ghidella, M.E., Late Cretaceous to recent plate motions in western South America revisited (2012) Earth Planet. Sci. Lett., pp. 152-163
  • Spikings, R., Dungan, M., Foeken, J., Carter, A., Page, L., Stuart, F., Tectonic response of the central Chilean margin (35-38S) to the collision and subduction of heterogeneous oceanic crust: a thermochronological study (2008) J. Geol. Soc., 165, pp. 941-953
  • Stern, C.R., Role of subduction erosion in the generation of Andean magmas (1991) Geology, 19, pp. 78-81
  • Stern, C.R., Active Andean volcanism: its geologic and tectonic setting (2004) Rev. Geol. Chile, 31, pp. 161-206
  • Stern, C.R., Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle (2011) Gondwana Res., 20, pp. 284-308
  • Thomas, W.A., Astini, R.A., Ordovician accretion of the Argentine Precordillera terrane to Gondwana: a review (2003) J. South Am. Earth Sci., 16, pp. 67-79
  • Thomas, W.A., Astini, R.A., Mueller, P.A., Gehrels, G.E., Wooden, J.L., Transfer of the Argentine Precordillera terrane from Laurentia: constraints from detrital-zircon geochronology (2004) Geology, 32, pp. 965-968
  • Valley, J.W., Oxygen isotopes in zircon (2003), pp. 343-386. , In: Zircons. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America (eds. J.M. Hanchar and P.W.O. Hoskin). Chantilly, Virginia; Valley, J.W., Kinny, P.D., Schulze, D.J., Spicuzza, M.J., Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts (1998) Contrib. Mineral. Petrol., 133, pp. 1-11
  • Von Huene, R., Scholl, D.W., Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust (1991) Rev. Geophys., 29
  • von Huene, R., Scholl, D.W., Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust (1991) Rev. Geophys., 29, pp. 279-316
  • Wang, L.-J., Griffin, W.L., Yu, J.-H., O'Reilly, S.Y., U-Pb and Lu-Hf isotopes in detrital zircon from Neoproterozoic sedimentary rocks in the northern Yangtze Block: implications for Precambrian crustal evolution (2013) Gondwana Res., 23, pp. 1261-1272
  • Yañez, G.A., Ranero, C.R., von Huene, R., Díaz, J., Magnetic anomaly interpretation across the southern Central Andes (32-34°S): the role of the Juan Fernández Ridge in the late Tertiary evolution of the margin (2001) J. Geophys. Res., 106, pp. 6325-6345
  • Yañez, G.A., Cembrano, J., Pardo, M., Ranero, C.R., Selles, D., The Challenger-Juan Fernández-Maipo major tectonic transition of the Nazca-Andean subduction system at 33-34°S: geodynamic evidence and implications (2002) J. South Am. Earth Sci., 15, pp. 28-38

Citas:

---------- APA ----------
Jones, R.E., Kirstein, L.A., Kasemann, S.A., Dhuime, B., Elliott, T., Litvak, V.D., Alonso, R.,..., Edinburgh Ion Microprobe Facility (EIMF) (2015) . Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon. Geochimica et Cosmochimica Acta, 164, 386-402.
http://dx.doi.org/10.1016/j.gca.2015.05.007
---------- CHICAGO ----------
Jones, R.E., Kirstein, L.A., Kasemann, S.A., Dhuime, B., Elliott, T., Litvak, V.D., et al. "Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon" . Geochimica et Cosmochimica Acta 164 (2015) : 386-402.
http://dx.doi.org/10.1016/j.gca.2015.05.007
---------- MLA ----------
Jones, R.E., Kirstein, L.A., Kasemann, S.A., Dhuime, B., Elliott, T., Litvak, V.D., et al. "Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon" . Geochimica et Cosmochimica Acta, vol. 164, 2015, pp. 386-402.
http://dx.doi.org/10.1016/j.gca.2015.05.007
---------- VANCOUVER ----------
Jones, R.E., Kirstein, L.A., Kasemann, S.A., Dhuime, B., Elliott, T., Litvak, V.D., et al. Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon. Geochim. Cosmochim. Acta. 2015;164:386-402.
http://dx.doi.org/10.1016/j.gca.2015.05.007