Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Understanding the genetic architecture of complex traits requires identification of the underlying genes and characterization of gene-by-gene and genotype-by-environment interactions. Behaviors that mediate interactions between organisms and their environment are complex traits expected to be especially sensitive to environmental conditions. Previous studies on the olfactory avoidance response of Drosophila melanogaster showed that the genetic architecture of this model behavior depends on epistatic networks of pleiotropic genes. We performed a screen of 1339 co-isogenic p[GT1]-element insertion lines to identify novel genes that contribute to odor-guided behavior and identified 55 candidate genes with known p[GT1]-element insertion sites. Characterization of the expression profiles of 10 p[GT1]-element insertion lines showed that the effects of the transposon insertions are often dependent on developmental stage and that hypomorphic mutations in developmental genes can elicit profound adult behavioral deficits. We assessed epistasis among these genes by constructing all possible double heterozygotes and measuring avoidance responses under two stimulus conditions. We observed enhancer and suppressor effects among subsets of these P-element-tagged genes, and surprisingly, epistatic interactions shifted with changes in the concentration of the olfactory stimulus. Our results show that the manifestation of epistatic networks dynamically changes with alterations in the environment. Copyright © 2006 by the Genetics Society of America.

Registro:

Documento: Artículo
Título:Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster
Autor:Sambandan, D.; Yamamoto, A.; Fanara, J.-J.; Mackay, T.F.C.; Anholt, R.R.H.
Filiación:Department of Genetics, North Carolina State University, Raleigh, NC 27695, United States
Department of Zoology, North Carolina State University, Raleigh, NC 27695, United States
W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States
Department of Ecology, Genetics and Evolution, University of Buenos Aires, Buenos Aires 1428, Argentina
W. M. Keck Center for Behavioral Biology, Campus Box 7617, North Carolina State University, Raleigh, NC 27695-7617, United States
Palabras clave:animal behavior; animal cell; animal experiment; animal tissue; article; avoidance behavior; controlled study; developmental genetics; Drosophila melanogaster; female; gene; gene expression; gene identification; gene insertion; gene interaction; gene mutation; genetic epistasis; gt1 gene; heterozygosity; male; nonhuman; odor; priority journal; smelling; transposon; Animals; Behavior, Animal; DNA Transposable Elements; Drosophila melanogaster; Epistasis, Genetic; Genes, Insect; Mutagenesis, Insertional; Mutation; Odors; Smell; Drosophila melanogaster
Año:2006
Volumen:174
Número:3
Página de inicio:1349
Página de fin:1363
DOI: http://dx.doi.org/10.1534/genetics.106.060574
Título revista:Genetics
Título revista abreviado:Genetics
ISSN:00166731
CODEN:GENTA
CAS:DNA Transposable Elements
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00166731_v174_n3_p1349_Sambandan

Referencias:

  • Abdelilah-Seyfried, S., Chan, Y.M., Zeng, C., Justice, N.J., Younger-Shepherd, S., A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ (2000) Genetics, 155, pp. 733-752
  • Anholt, R.R.H., Genetic modules and networks for behavior: Lessons from Drosophila (2004) BioEssays, 26, pp. 1299-1306
  • Anholt, R.R.H., Mackay, T.F.C., Quantitative genetic analyses of complex behaviours in Drosophila (2004) Nat. Rev. Genet., 5, pp. 838-849
  • Anholt, R.R.H., Lyman, R.F., Mackay, T.F.C., Effects of single P-element insertions on olfactory behavior in Drosophila melanogaster (1996) Genetics, 143, pp. 293-301
  • Anholt, R.R.H., Dilda, C.L., Chang, S., Fanara, J.J., Kulkarni, N.H., The genetic architecture of odor-guided behavior in Drosophila: Epistasis and the transcriptome (2003) Nat. Genet., 35, pp. 180-184
  • Bauer, R., Lehmann, C., Fuss, B., Eckardt, F., Hoch, M., The Drosophila gap junction channel gene innexin 2 controls foregut development in response to Wingless signaling (2002) J. Cell Sci., 115, pp. 1859-1867
  • Bauer, R., Lehmann, C., Martini, J., Eckardt, F., Hoch, M., Gap junction channel protein innexin2 is essential for epithelial morphogenesis in the Drosophila embryo (2004) Mol. Biol. Cell, 15, pp. 2992-3004
  • Bellen, H.J., Levis, R.W., Liao, G., He, Y., Carlson, J.W., The BDGP gene disruption project: Single transposon insertions associated with 40% of Drosophila genes (2004) Genetics, 167, pp. 761-781
  • Benton, R., Sachse, S., Michnick, S.W., Vosshall, L.B., Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo (2006) PLoS Biol., 4 (2), pp. e20
  • Bhalerao, S., Sen, A., Stocker, R., Rodrigues, V., Olfactory neurons expressing identified receptor genes project to subsets of glomeruli within the antennal lobe of Drosophila melanogaster (2003) J. Neurobiol., 54, pp. 577-592
  • Boulianne, G.L., De La Concha, A., Campos-Ortega, J.A., Jan, L.Y., Jan, Y.N., The Drosophila neurogenic gene neuralized encodes a novel protein and is expressed in precursors of larval and adult neurons (1991) EMBO J., 10, pp. 2975-2983
  • Clyne, P., Warr, C., Freeman, M., Lessing, D., Kim, J., A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila (1999) Neuron, 22, pp. 327-338
  • De Bruyne, M., Clyne, P., Carlson, J., Odor coding in a model olfactory organ: The Drosophila maxillary palp (1999) J. Neurosci., 19, pp. 4520-4532
  • De Bruyne, M., Foster, K., Carlson, J., Odor coding in the Drosophila antenna (2001) Neuron, 30, pp. 537-552
  • Dilda, C.L., Mackay, T.F.C., The genetic architecture of Drosophila sensory bristle number (2002) Genetics, 162, pp. 1655-1674
  • Dobritsa, A.A., Van Der Goes Van Naters, W., Warr, C.G., Steinbrecht, R.A., Carlson, J.R., Integrating the molecular and cellular basis of odor coding in the Drosophila antenna (2003) Neuron, 37, pp. 827-841
  • Falconer, D.S., Mackay, T.F.C., (1996) Introduction to Quantitative Genetics, Ed. 4, , Addison-Wesley/Longman, Harlow, UK
  • Fedorowicz, G.M., Fry, J.D., Anholt, R.R.H., Mackay, T.F.C., Epistatic interactions between smell-impaired loci in Drosophila melanogaster (1998) Genetics, 148, pp. 1885-1891
  • Ganguly, I., Mackay, T.F.C., Anholt, R.R.H., scribble is essential for olfactory behavior in Drosophila (2003) Genetics, 164, pp. 1447-1457
  • Gao, Q., Chess, A., Identification of candidate Drosophila olfactory receptors from genomic DNA sequence (1999) Genomics, 60, pp. 31-39
  • Gao, Q., Yuan, B., Chess, A., Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe (2000) Nat. Neurosci., 3, pp. 780-785
  • Gorski, S.M., Chittaranjan, S., Pleasance, E.D., Freeman, J.D., Anderson, C.L., A SAGE approach to discovery of genes involved in autophagic cell death (2003) Curr. Biol., 13, pp. 358-363
  • Griffing, B., Concept of general and specific combining ability in relation to diallel crossing systems (1956) Aust. J. Biol. Sci., 9, pp. 463-493
  • Hallem, E., Ho, M., Carlson, J., The molecular basis of odor coding in the Drosophila antenna (2004) Cell, 117, pp. 965-979
  • Hallem, E.A., Carlson, J.R., Coding of odors by a receptor repertoire (2006) Cell, 125, pp. 143-160
  • Hayashi, S., Hirose, S., Metcalfe, T., Shirras, A.D., Control of imaginal cell development by the escargot gene of Drosophila (1993) Development, 118, pp. 105-115
  • Jhaveri, D., Sen, A., Rodrigues, V., Mechanisms underlying olfactory neuronal connectivity in Drosophila: The atonal lineage organizes the periphery while sensory neurons and glia pattern the olfactory lobe (2000) Dev. Biol., 226, pp. 73-87
  • Khare, N., Fascetti, N., DaRocha, S., Chiquet-Ehrismann, R., Baumgartner, S., Expression patterns of two new members of the semaphorin family in Drosophila suggest early functions during embryogenesis (2000) Mech. Dev., 91, pp. 393-397
  • Kulkarni, N.H., Yamamoto, A., Robinson, K.O., Mackay, T.F.C., Anholt, R.R.H., The DSC1 channel, encoded by the smi60E locus, contributes to odor-guided behavior in Drosophila melanogaster (2002) Genetics, 161, pp. 1507-1516
  • Lai, E.C., Deblandre, G.A., Kitner, C., Rubin, G.M., Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta (2001) Dev. Cell., 1, pp. 783-794
  • Laissue, P., Reiter, C., Hiesinger, P., Halter, S., Fischbach, K., Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster (1999) J. Comp. Neurol., 405, pp. 543-552
  • Larsson, M., Domingos, A., Jones, W., Chiappe, M., Amrein, H., Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction (2004) Neuron, 43, pp. 703-714
  • Lehmann, M., Siegmund, T., Lintermann, K.G., Korge, G., The pipsqueak protein of Drosophila melanogaster binds to GAGA sequences through a novel DNA-binding domain (1998) J. Biol. Chem., 273, pp. 28504-28509
  • Lukacsovich, T., Asztalos, Z., Awano, W., Baba, K., Kondo, S., Dual-tagging gene trap of novel genes in Drosophila melanogaster (2001) Genetics, 157, pp. 727-742
  • MacDougall, N., Lad, Y., Wilkie, G.S., Francis-Lang, H., Sullivan, W., Merlin, the Drosophila homologue of neurofibromatosis-2, is specifically required in posterior follicle cells for axis formation in the oocyte (2001) Development, 128, pp. 665-673
  • Mackay, T.F.C., The genetic architecture of quantitative traits: Lessons from Drosophila (2004) Curr. Opin. Genet. Dev., 14, pp. 253-257
  • Ng, M., Roorda, R., Lima, S., Zemelman, B., Morcillo, P., Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly (2002) Neuron, 36, pp. 463-474
  • Norga, K.K., Gurganus, M.C., Dilda, C.L., Yamamoto, A., Lyman, R.F., Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development (2003) Curr. Biol., 13, pp. 1388-1397
  • Prokopenko, S.N., He, Y., Lu, Y., Bellen, H.J., Mutations affecting the development of the peripheral nervous system in Drosophila: A molecular screen for novel proteins (2000) Genetics, 156, pp. 1691-1715
  • Renault, A.D., Starz-Gaiano, M., Lehmann, R., Metabolism of sphingosine 1-phosphate and lysophosphatidic acid: A genome wide analysis of gene expression in Drosophila (2002) Mech. Dev., 119, pp. S293-S301
  • Shandbhag, S., Muller, B., Steinbrecht, A., Atlas of olfactory organs of Drosophila melanogaster. 1. Types, external organization, innervation and distribution of olfactory sensilla (1999) Int. Insect Morphol. Embryol., 28, pp. 377-397
  • Siegmund, T., Lehmann, M., The Drosophila Pipsqueak protein defines a new family of helix-turn-helix DNA-binding proteins (2002) Dev. Genes Evol., 212, pp. 152-157
  • Sprague, G.F., Tatum, L.A., General vs. specific combining ability in single crosses of corn (1942) J. Am. Soc. Agron., 34, pp. 923-932
  • Stoltzfus, J.R., Horton, W.J., Grotewiel, M.S., Odor-guided behavior in Drosophila requires calreticulin (2003) J. Comp. Physiol. A, 189, pp. 471-483
  • Van Swinderen, B., Greenspan, R.J., Flexibility in a gene network affecting a simple behavior in Drosophila melanogaster (2005) Genetics, 169, pp. 2151-2163
  • Vosshall, L., Amrein, H., Morozov, P., Rzhetsky, A., Axel, R., A spatial map of olfactory receptor expression in the Drosophila antenna (1999) Cell, 96, pp. 725-736
  • Vosshall, L., Wong, A., Axel, R., An olfactory sensory map in the fly brain (2000) Cell, 102, pp. 147-159
  • Wang, J., Wong, A., Flores, J., Vosshall, L., Axel, R., Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain (2003) Cell, 112, pp. 271-282
  • Weber, U., Siegel, V., Mlodzik, M., pipsqueak encodes a novel nuclear protein required downstream of seven-up for the development of photoreceptor R3 and R4 (1995) EMBO J., 14, pp. 6247-6257
  • Whiteley, M., Noguchi, P.D., Sensabaugh, S.M., Odenwald, W.F., Kassis, J.A., The Drosophila gene escargot encodes a zinc finger motif found in snail-related genes (1992) Mech. Dev., 36, pp. 117-127
  • Yeh, E., Zhou, L., Rudzik, N., Boulianne, G.L., neuralized functions cell autonomously to regulate Drosophila sense organ development (2000) EMBO J., 19, pp. 4827-4837
  • Yeh, E., Dermer, M., Commisso, C., Zhou, L., McGlade, C.J., Neuralized functions as an E3 ubiquitin ligase during Drosophila development (2001) Curr. Biol., 11, pp. 1675-1679
  • Zhang, Y., Kang, M.S., Lamkey, K.R., DIALLEL-SAS05: A comprehensive program for Griffing's and Gardner-Eberhart analyses (2005) Agron. J., 97, pp. 1097-1106

Citas:

---------- APA ----------
Sambandan, D., Yamamoto, A., Fanara, J.-J., Mackay, T.F.C. & Anholt, R.R.H. (2006) . Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics, 174(3), 1349-1363.
http://dx.doi.org/10.1534/genetics.106.060574
---------- CHICAGO ----------
Sambandan, D., Yamamoto, A., Fanara, J.-J., Mackay, T.F.C., Anholt, R.R.H. "Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster" . Genetics 174, no. 3 (2006) : 1349-1363.
http://dx.doi.org/10.1534/genetics.106.060574
---------- MLA ----------
Sambandan, D., Yamamoto, A., Fanara, J.-J., Mackay, T.F.C., Anholt, R.R.H. "Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster" . Genetics, vol. 174, no. 3, 2006, pp. 1349-1363.
http://dx.doi.org/10.1534/genetics.106.060574
---------- VANCOUVER ----------
Sambandan, D., Yamamoto, A., Fanara, J.-J., Mackay, T.F.C., Anholt, R.R.H. Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics. 2006;174(3):1349-1363.
http://dx.doi.org/10.1534/genetics.106.060574