Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Spatial or temporal differences in environmental variables, such as temperature, are ubiquitous in nature and impose stress on organisms. This is especially true for organisms that are isothermal with the environment, such as insects. Understanding the means by which insects respond to temperature and how they will react to novel changes in environmental temperature is important for understanding the adaptive capacity of populations and to predict future trajectories of evolutionary change. The organismal response to heat has been identified as an important environmental variable for insects that can dramatically influence life history characters and geographic range. In the current study we surveyed the amount of variation in heat tolerance among Drosophila melanogaster populations collected at diverse sites along a latitudinal gradient in Argentina (24°-38°S). This is the first study to quantify heat tolerance in South American populations and our work demonstrates that most of the populations surveyed have abundant within-population phenotypic variation, while still exhibiting significant variation among populations. The one exception was the most heat tolerant population that comes from a climate exhibiting the warmest annual mean temperature. All together our results suggest there is abundant genetic variation for heat-tolerance phenotypes within and among natural populations of Drosophila and this variation has likely been shaped by environmental temperature. © 2012 Springer Science+Business Media B.V.

Registro:

Documento: Artículo
Título:Genetic variation in heat-stress tolerance among South American Drosophila populations
Autor:Fallis, L.C.; Fanara, J.J.; Morgan, T.J.
Filiación:The Division of Biology, The Ecological Genomics Institute, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, United States
Departamento de Ecología, Genética y Evolución, FCEN UBAI, Buenos Aires, Argentina
Palabras clave:Heat survival; Temperature stress resistance; Thermotolerance; animal; article; Drosophila melanogaster; environment; female; genetic variability; genetics; heat shock response; phenotype; physiology; South America; Animals; Drosophila melanogaster; Environment; Female; Genetic Variation; Heat-Shock Response; Phenotype; South America; Drosophila melanogaster; Hexapoda
Año:2011
Volumen:139
Número:10
Página de inicio:1331
Página de fin:1337
DOI: http://dx.doi.org/10.1007/s10709-012-9635-z
Título revista:Genetica
Título revista abreviado:Genetica
ISSN:00166707
CODEN:GENEA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00166707_v139_n10_p1331_Fallis

Referencias:

  • Anderson, A., Collinge, J., Hoffmann, A.A., Kellett, M., McKechnie, S.W., Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omega gene in Drosophila melanogaster (2003) Heredity, 90, pp. 195-202
  • Ayrinhac, A., Debat, V., Gibert, P., Kister, A., Legout, H., Moreteau, B., Vergillino, R., David, J., Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability (2004) Funct Ecol, 18, pp. 700-706
  • Azevedo, R.B.R., French, V., Partridge, L., Thermal evolution of egg size in Drosophila melanogaster (1996) Evolution, 50, pp. 2338-2345
  • Bubliy, O.A., Riihimaa, A., Norry, F.M., Loeschcke, V., Variation in resistance and acclimation to low temperature stress among three geographical strains of Drosophila melanogaster (2002) J Therm Biol, 27, pp. 237-344
  • Clarke, A., Climate change and animal distributions (1996) Animals and Temperature: Phenotypic and Evolutionary Adaptation, pp. 377-407. , I. A. Johnston and A. F. Bennett (Eds.), Cambridge: Cambridge University Press
  • Cossins, A.R., Bowler, K., (1987) Temperature Biology of Animals, , New York: Chapman & Hall
  • David, J.R., Capy, P., Genetic variation of Drosophila melanogaster natural populations (1988) Trends Genet, 4, pp. 106-111
  • David, J.R., Gibert, P., Moreteau, B., Gilchrist, G.W., Huey, R.B., The fly that came in from the cold: geographic variation of recovery time from low-temperature exposure in Drosophila subobscura (2003) Funct Ecol, 17, pp. 425-430
  • David, J.R., Gibert, P., Legout, H., Petavy, G., Capy, P., Moreteau, B., Isofemale lines in Drosophila: an empirical approach to quantitative trait analysis in natural populations (2005) Heredity, 94, pp. 3-12
  • Davidson, J.K., Nonparallel geographic patterns for tolerance to cold and desiccation in Drosophila melanogaster and Drosophila simulans (1990) Aust J Zool, 38, pp. 155-161
  • Folguera, G., Cebalos, S., Spezzi, L., Fanara, J.J., Hasson, E., Clinal variation in developmental time and viability, and the response to thermal treatments in two species of Drosophila (2008) Biol J Linn Soc, 95, pp. 233-245
  • Gibert, P., Huey, R.B., Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny (2001) Physiol Biochem Zool, 74, pp. 429-434
  • Gibert, P., Moreteau, B., Petavy, G., Karan, D., David, J.R., Chill-coma tolerance, a major climatic adaptation among Drosophila species (2001) Evolution, 55, pp. 1063-1068
  • Gilchrist, G.W., Huey, R.B., The direct response of Drosophila melanogaster to selection on knockdown temperature (1999) Heredity, 83, pp. 15-29
  • Gilchrist, A.S., Partridge, L., A comparison of the genetic basis of wing size divergence in three parallel body size clines of Drosophila melanogaster (1999) Genetics, 153, pp. 1775-1787
  • Hoffmann, A.A., Parsons, P.A., (1991) Evolutionary Genetics of Environmental Stress, , Oxford: Oxford University Press
  • Hoffmann, A.A., Watson, M., Geographical variation in the acclimation responses of Drosophila to temperature extremes (1993) Am Nat, 142, pp. 93-113
  • Hoffmann, A.A., Willi, Y., Detecting genetic responses to environmental change (2008) Nat Rev Genet, 9, pp. 421-432
  • Hoffmann, A.A., Anderson, A.R., Hallas, R., Opposing clines for high and low temperature resistance in Drosophila melanogaster (2002) Ecol Lett, 5, pp. 614-618
  • Hoffmann, A.A., Sorensen, J.G., Loeschcke, V., Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches (2003) J Therm Biol, 28, pp. 175-216
  • Hoffmann, A.A., Hallas, R.J., Dean, J.A., Schiffer, M., Low potential for climatic stress adaptation in rainforest Drosophila species (2003) Science, 301, pp. 100-102
  • Hoffmann, A.A., Shirriffs, J., Scott, M., Relative importance of plastic vs genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia (2005) Funct Ecol, 19, pp. 222-227
  • Climate change 2007: Physical science basis (2007) Summary for policy makers approved at the 10th session of Working Group I at the IPCC, , IPCC Report IPCC, Paris, Feb 2007
  • Jenkins, N.L., Hoffmann, A.A., Genetic and maternal variation for heat resistance in Drosophila from the field (1994) Genetics, 137, pp. 783-789
  • Jentsch, A., Kreyling, J., Beierkuhnlein, C., A new generation of climate-change experiments: events, not trends (2007) Front Ecol Environ, 5, pp. 365-374
  • Karan, D., David, J.R., Cold tolerance in Drosophila: adaptive variations revealed by the analysis of starvation survival reaction norms (2000) J Therm Biol, 25, pp. 345-351
  • Lavagnino, J., Anholt, R.R.H., Fanara, J.J., Variation in genetic architecture of olfactory behavior among wild-derived populations of Drosophila melanogaster (2008) J Evol Biol, 21, pp. 988-996
  • Leather, S., Walter, K., Bale, J., (1993) The Ecology of Insects Overwintering, , Cambridge: Cambridge University Press
  • Loeschcke, V., Krebs, R.A., Selection for heat-shock resistance in larval and in adult Drosophila buzzattii: comparing direct and indirect responses (1996) Evolution, 50, pp. 2354-2359
  • Loeschcke, V., Krebs, R.A., Dahlgaard, J., Michalak, P., High-temperature stress and the evolution of thermal resistance in Drosophila (1997) Exs, 83, pp. 175-190
  • Mitchell, K.A., Hoffmann, A.A., Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila (2010) Funct Ecol, 24, pp. 694-700
  • Morgan, T.J., Mackay, T.F.C., Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster (2006) Heredity, 96, pp. 232-242
  • Parsons, P.A., Resistance to cold temperature stress in populations of Drosophila melanogaster and Drosophila simulans (1977) Aust J Zool, 25, pp. 693-698
  • Potvin, C., Tousignant, D., Evolutionary consequences of stimulated global change: genetic adaptation or adaptive phenotypic plasticity (1996) Oecologia, 108, pp. 683-693
  • Rako, L., Blacket, M.J., McKechnie, W., Hoffmann, A.A., Candidate genes and thermal phenotypes: identifying ecological important genetic variation for thermotolerance in the Australia Drosophila melanogaster cline (2007) Mol Ecol, 16, pp. 2948-2957
  • Rashkovetsky, E., Iliadi, K., Michalak, P., Lupu, A., Nevo, E., Feder, M.E., Korol, A., Adaptive differentiation of thermotolerance in Drosophila along a microclimatic gradient (2006) Heredity, 96, pp. 353-359
  • Reusch, T.B.H., Wood, T.E., Molecular ecology of global change (2007) Mol Ecol, 16, pp. 3973-3992
  • Rohmer, C., David, J.R., Moreteau, B., Joly, D., Heat induced male sterility in Drosophila melanogaster: adaptive genetic variations among geographic populations and role of the Y chromosome (2004) J Exp Biol, 207, pp. 2735-2742
  • (2009) SAS/STAT 9.2 User's Guide, , SAS Institute2nd edn., Cary: SAS Institute
  • Stanley, S.M., Parsons, P.A., The response of the cosmopolitan species, Drosophila melanogaster, to ecological gradients (1981) Proc Ecol Soc Aust, 11, pp. 121-130
  • Umina, P.A., Weeks, A.R., Kearney, M.R., McKechnie, S.W., Hoffmann, A.A., A rapid shift in a classic clinal pattern in Drosophila reflecting climate change (2005) Science, 308, pp. 691-693
  • Zhen, Y., Ungerer, M.C., Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana (2008) New Phytol, 177, pp. 419-427

Citas:

---------- APA ----------
Fallis, L.C., Fanara, J.J. & Morgan, T.J. (2011) . Genetic variation in heat-stress tolerance among South American Drosophila populations. Genetica, 139(10), 1331-1337.
http://dx.doi.org/10.1007/s10709-012-9635-z
---------- CHICAGO ----------
Fallis, L.C., Fanara, J.J., Morgan, T.J. "Genetic variation in heat-stress tolerance among South American Drosophila populations" . Genetica 139, no. 10 (2011) : 1331-1337.
http://dx.doi.org/10.1007/s10709-012-9635-z
---------- MLA ----------
Fallis, L.C., Fanara, J.J., Morgan, T.J. "Genetic variation in heat-stress tolerance among South American Drosophila populations" . Genetica, vol. 139, no. 10, 2011, pp. 1331-1337.
http://dx.doi.org/10.1007/s10709-012-9635-z
---------- VANCOUVER ----------
Fallis, L.C., Fanara, J.J., Morgan, T.J. Genetic variation in heat-stress tolerance among South American Drosophila populations. Genetica. 2011;139(10):1331-1337.
http://dx.doi.org/10.1007/s10709-012-9635-z