Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Asr gene family (named after abscicic acid [ABA], stress, ripening), exclusively present in plant genomes, is involved in transcriptional regulation. Its members are up-regulated in roots and leaves of water- or salt-stressed plants. In previous work, evidence of adaptive evolution (as inferred from synonymous and nonsynonymous divergence rates) has been reported for Asr2 in Solanum chilense and S. arcanum, two species dwelling in habitats with different precipitation regimes. In this paper we investigate patterns of intraspecific nucleotide variation in Asr2 and the unlinked locus CT114 in S. chilense and S. arcanum. The extent of nucleotide diversity in Asr2 differed between species in more than one order of magnitude. In both species we detected evidence of non-neutral evolution, which may be ascribed to different selective regimes, potentially associated to unique climatic features, or, alternatively, to demographic events. The results are discussed in the light of demographic and selective hypotheses. © 2008 Springer Science+Business Media B.V.

Registro:

Documento: Artículo
Título:Nucleotide polymorphism in the drought responsive gene Asr2 in wild populations of tomato
Autor:Giombini, M.I.; Frankel, N.; Iusem, N.D.; Hasson, E.
Filiación:Departamento de Fisiología, Biología Molecular y Celular and IFIByNE-CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
Palabras clave:Asr genes; Drought; Polymorphism; Selection; Solanum; Asr2 protein, Lycopersicon esculentum; vegetable protein; article; gene expression regulation; genetic polymorphism; genetics; haplotype; plant gene; plant genome; population genetics; tomato; Gene Expression Regulation, Plant; Genes, Plant; Genetics, Population; Genome, Plant; Haplotypes; Lycopersicon esculentum; Plant Proteins; Polymorphism, Genetic; Lycopersicon chilense; Lycopersicon esculentum; Solanum
Año:2009
Volumen:136
Número:1
Página de inicio:13
Página de fin:25
DOI: http://dx.doi.org/10.1007/s10709-008-9295-1
Título revista:Genetica
Título revista abreviado:Genetica
ISSN:00166707
CODEN:GENEA
CAS:Asr2 protein, Lycopersicon esculentum; Plant Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00166707_v136_n1_p13_Giombini

Referencias:

  • Aguadé, M., Nucleotide sequence variation at two genes of the phenylpropanoid pathway, the FAH1 and F3H genes, in Arabidopsis thaliana (2001) Mol Biol Evol, 18, pp. 1-9
  • Ardell, D.H., SCANMS: Adjusting for multiple comparisons in sliding window neutrality tests (2004) Bioinformatics, 20, pp. 1986-1988. , 10.1093/bioinformatics/bth187
  • Arunyawat, U., Stephan, W., Städler, T., Using multilocus sequence data to assess population structure, natural selection, and linkage disequilibrium in wild tomatoes (2007) Mol Biol Evol, 24, pp. 2310-2322. , 10.1093/molbev/msm162
  • Baudry, E., Depaulis, F., Effect of misoriented sites on neutrality tests with outgroup (2003) Genetics, 165, pp. 1619-1622
  • Bermudez-Moretti, M., Maskin, L., Gudesblat, G., Correa-García, S., Iusem, N.D., Asr1, a stress-induced tomato protein, protects yeast from osmotic stress (2006) Physiol Plant, 127, pp. 111-118. , 10.1111/j.1399-3054.2006.00664.x
  • Bradley, R.D., Hillis, D.M., Recombinant DNA sequences generated by PCR amplification (1997) Mol Biol Evol, 14, pp. 592-593
  • Cakir, B., Agasse, A., Gaillard, C., Saumonneau, A., Delrot, S., Atanassova, R., A grape ASR protein involved in sugar and abscisic acid signaling (2003) Plant Cell, 15, pp. 2165-2180. , 10.1105/tpc.013854
  • Clement, M., Posada, D., Crandall, K.A., TCS: A computer program to estimate gene genealogies (2000) Mol Ecol, 9, pp. 1657-1659. , 10.1046/j.1365-294x.2000.01020.x
  • Crandall, K.A., Templeton, A.R., Statistical methods for detecting recombination (1999) The Evolution of HIV, pp. 153-176. , Crandall KA (ed) The Johns Hopkins University Press
  • Fay, J.C., Wu, C.I., Hitchhiking under positive Darwinian selection (2000) Genetics, 155, pp. 1405-1413
  • Filatov, D.A., Charlesworth, D., DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus (1999) Genetics, 153, pp. 1423-1434
  • Frankel, N., Hasson, E., Iusem, N.D., Rossi, M.S., Adaptive evolution of water stress-induced gene Asr2 in Lycopersicon species dwelling in arid habitats (2003) Mol Biol Evol, 20, pp. 1955-1962. , 10.1093/molbev/msg214
  • Fu, Y.-X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection (1997) Genetics, 147, pp. 915-925
  • Fu, Y.-X., Li, W.-H., Statistical tests of neutrality of mutations (1993) Genetics, 133, pp. 693-709
  • Ganal, M.W., Czihal, R., Hannappel, U., Kloos, D.U., Polley, A., Ling, H.Q., Sequencing of cDNA clones from the genetic map of tomato (Lycopersicon esculentum) (1998) Genome Res, 8, pp. 842-847
  • Hanfstingl, U., Berry, A., Kellogg, E.A., Costa, J.T., Rudiger, W., Ausubel, F.M., Haplotypic divergence coupled with lack of diversity at the Arabidopsis thaliana alcohol dehydrogenase locus: Roles for both balancing and directional selection? (1994) Genetics, 138, pp. 811-828
  • Hoekstra, F.A., Golovina, E.A., Buitink, J., Mechanisms of plant desiccation tolerance (2001) Trends Plant Sci, 6, pp. 431-438. , 10.1016/S1360-1385(01)02052-0
  • Hudson, R.R., Gene genealogies and the coalescent process (1990) Oxf Surv Evol Biol, 7, pp. 1-44
  • Hudson, R.R., Generating samples under a Wright-Fisher neutral model of genetic variation (2002) Bioinformatics, 18, pp. 337-338. , 10.1093/bioinformatics/18.2.337
  • Hudson, R.R., Kaplan, N.L., Statistical properties of the number of recombination events in the history of a sample of DNA sequences (1985) Genetics, 111, pp. 147-164
  • Hudson, R.R., Boos, D., Kaplan, N.L., A statistical test for detecting geographic subdivision (1992) Mol Biol Evol, 9, pp. 138-151
  • Iusem, N.D., Bartholomew, D.M., Hitz, W.D., Scolnik, P.A., Tomato transcript induced in water stress and ripening (1993) Plant Physiol, 102, pp. 1353-1354. , 10.1104/pp. 102.4.1353
  • Jeanneau, M., Gerentes, D., Foueillassar, X., Zivy, M., Vidal, J., Toppan, A., Improvement of drought tolerance in maize: Towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC (2002) Biochimie, 84, pp. 1127-1135. , 10.1016/S0300-9084(02)00024-X
  • Kalifa, Y., Gilad, A., Konrad, Z., Zaccai, M., Scolnik, P.A., Bar-Zvi, D., The water- and salt-stress regulated Asr1 gene encodes a zinc-dependent DNA-binding protein (2004) Biochem J, 381, pp. 373-378. , 10.1042/BJ20031800
  • Kalifa, Y., Perlson, E., Gilad, A., Konrad, Z., Scolnik, P.A., Bar-Zvi, D., Over-expression of the water and salt stress-regulated Asr1 gene confers an increased salt tolerance (2004) Plant Cell Environ, 27, pp. 1459-1468. , 10.1111/j.1365-3040.2004.01251.x
  • Kane, N.C., Rieseberg, L.H., Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus (2007) Genetics, 175, pp. 1823-1834. , 10.1534/genetics.106.067728
  • Kimura, M., (1983) The Neutral Theory of Molecular Evolution, , Cambridge University Press Cambridge, UK
  • Maskin, L., Gudesblat, G.E., Moreno, J.E., Carrari, F.O., Frankel, N., Sambade, A., Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum) (2001) Plant Sci, 161, pp. 739-746. , 10.1016/S0168-9452(01)00464-2
  • Maynard Smith, J., Haigh, J., The hitch-hiking effect of a favourable gene (1974) Genet Res, 23, pp. 23-35
  • Mustonen, V., Lässig, M., Adaptations to fluctuating selection in Drosophila (2007) Proc Natl Acad Sci USA, 104, pp. 2277-2282. , 10.1073/pnas.0607105104
  • Peralta, I.E., Spooner, D.M., Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (2001) Am J Bot, 88, pp. 1888-1902. , 10.2307/3558365
  • Peters, S., Mundree, S.G., Thomson, J.A., Farrant, J.M., Keller, F., Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): Both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit (2007) J Exp Bot, 58, pp. 1947-1956. , 10.1093/jxb/erm056
  • Qiu, Y.L., Palmer, J.D., Phylogeny of early land plants: Insights from genes and genomes (1999) Trends Plant Sci, 4, pp. 26-30. , 10.1016/S1360-1385(98)01361-2
  • Roselius, K., Stephan, W., Städler, T., The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species (2005) Genetics, 171, pp. 753-763. , 10.1534/genetics.105.043877
  • Rossi, M.M., Iusem, N.D., Tomato genomic clone homologous to a gene encoding an ABA-induced protein (1994) Plant Physiol, 104, pp. 1073-1074. , 10.1104/pp. 104.3.1073
  • Rossi, M.M., Lijavetzky, D., Bernacchi, D., Hopp, H.E., Iusem, N.D., Asr genes belong to a tomato gene family of at least three closely linked loci located to chromosome 4 (1996) Mol Gen Genet, 252, pp. 489-492
  • Rozas, J., Barrio Sánchez-Del, J.C., Messeguer, X., Rozas, R., DnaSP, DNA polymorphism analyses by the coalescent and other methods (2003) Bioinformatics, 19, pp. 2496-2497. , 10.1093/bioinformatics/btg359
  • Städler, T., Roselius, K., Stephan, W., Genealogical footprints of speciation processes in wild tomatoes: Demography and evidence for historical gene flow (2005) Evol Int J Org Evol, 59, pp. 1268-1279
  • Tajima, F., Statistical method for testing the neutral mutation hypothesis (1989) Genetics, 123, pp. 585-595
  • Templeton, A.R., Crandall, K.A., Sing, C.F., A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation (1992) Genetics, 132, pp. 619-633
  • Tunnacliffe, A., Wise, M.J., The continuing conundrum of the LEA proteins (2007) Naturwissenschaften, 94, pp. 791-812. , 10.1007/s00114-007-0254-y
  • Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor (1999) Plant Cell, 11, pp. 1743-1754
  • Wall, J.D., Andolfatto, P., Przeworski, M., Testing models of selection and demography in Drosophila simulans (2002) Genetics, 162, pp. 203-216
  • Watterson, G.A., On the number of segregating sites in genetical models without recombination (1975) Theor Popul Biol, 7, pp. 188-193
  • Yang, C.Y., Chen, Y.C., Jauh, G.Y., Wang, C.S., A Lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis (2005) Plant Physiol, 139, pp. 836-846

Citas:

---------- APA ----------
Giombini, M.I., Frankel, N., Iusem, N.D. & Hasson, E. (2009) . Nucleotide polymorphism in the drought responsive gene Asr2 in wild populations of tomato. Genetica, 136(1), 13-25.
http://dx.doi.org/10.1007/s10709-008-9295-1
---------- CHICAGO ----------
Giombini, M.I., Frankel, N., Iusem, N.D., Hasson, E. "Nucleotide polymorphism in the drought responsive gene Asr2 in wild populations of tomato" . Genetica 136, no. 1 (2009) : 13-25.
http://dx.doi.org/10.1007/s10709-008-9295-1
---------- MLA ----------
Giombini, M.I., Frankel, N., Iusem, N.D., Hasson, E. "Nucleotide polymorphism in the drought responsive gene Asr2 in wild populations of tomato" . Genetica, vol. 136, no. 1, 2009, pp. 13-25.
http://dx.doi.org/10.1007/s10709-008-9295-1
---------- VANCOUVER ----------
Giombini, M.I., Frankel, N., Iusem, N.D., Hasson, E. Nucleotide polymorphism in the drought responsive gene Asr2 in wild populations of tomato. Genetica. 2009;136(1):13-25.
http://dx.doi.org/10.1007/s10709-008-9295-1