Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The difficult issues related to the interpretation of quantum mechanics and, in particular, the “measurement problem” are revisited using as motivation the process of generation of structure from quantum fluctuations in inflationary cosmology. The unessential mathematical complexity of the particular problem is bypassed, facilitating the discussion of the conceptual issues, by considering, within the paradigm set up by the cosmological problem, another problem where symmetry serves as a focal point: a simplified version of Mott’s problem. © 2017, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Interpretations of Quantum Theory in the Light of Modern Cosmology
Autor:Castagnino, M.; Fortin, S.; Laura, R.; Sudarsky, D.
Filiación:Instituto de Astronomía y Física del Espacio (CONICET-UBA) and Instituto de Física Rosario (CONICET-UNR), Rosario, Argentina
CONICET, Departamento de Física FCEN (Universidad de Buenos Aires), Buenos Aires, Argentina
Instituto de Física Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, Ingeniería y Agrimensura (UNR), Pellegrini 250, Rosario, 2000, Argentina
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. Postal 70-543DF 04510, Mexico
Palabras clave:Foundations of quantum mechanics; Interpretation of quantum mechanics; Measurement problem
Año:2017
Volumen:47
Número:11
Página de inicio:1387
Página de fin:1422
DOI: http://dx.doi.org/10.1007/s10701-017-0100-9
Título revista:Foundations of Physics
Título revista abreviado:Found. Phys.
ISSN:00159018
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00159018_v47_n11_p1387_Castagnino

Referencias:

  • De Witt, B.S., Quantum theory of gravity. I. The canonical theory (1967) Phys. Rev., 160, p. 1113
  • Wheeler, J.A., De Witt, C., Wheeler, J.A., (1968) Battelle Reencontres 1987, , Benjamin, New York
  • C.J.: Canonical Quantum Gravity and the Problem of Time (1992) GIFT Semminar-0157228, , Ishamqr-qc/9210011
  • (1992) See for instance Isham, J
  • Guth, A., (1990) Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981). For a more exhaustive discussion see for instance the relevant chapter in The Early Universe, E.W. Kolb and M.S, , Turner: Frontiers in Physics Lecture Note Series (Addison Wesley Publishing Company
  • Muckhanov, V., (2005) Physical Foundations of Cosmology, p. 348. , Cambridge University Press, Cambridge
  • Halliwell, J.J., Decoherence in quantum cosmology (1989) Phys. Rev. D, 39, p. 2912
  • Origin of classical structure from inflation. Nucl. Phys. Proc. Suppl. 88, 255 (2000), , Kiefer, C
  • A.A.: Semiclassicality and decoherence of cosmological perturbations (1996) Class. Quant. Grav, , Polarski, D., Starobinsky
  • Quantum gravity (QC178:S4:1990) (1992) See High Energy Physics Index, , Zurek, W.H.: Environment induced superselection in cosmology. In: Cosmology in Moscow 1990, ProceedingsNo. 624)
  • Branderberger, R., Feldman, H., Mukhavov, V., Gauge invariant cosmological perturbations (1992) Phys. Rep., 215, p. 203
  • A.: Decoherence functional and inhomogeneities in the early universe (1993) Int. J. Mod. Phys. D, , Laflamme, R., Matacz
  • The self-induced approach to decoherence in cosmology. Int. J. Theory Phys. 42, 1281 (2003), , Castagnino, M., Lombardi, O
  • The generation of classical inhomogeneities, Phys. Rev. D 72, 063506 (2005), , Lombardo, F.C., Lopez Nacir, D.: Decoherence during inflation
  • Inflationary Cosmological Perturbations of Quantum Mechanical Origin. Lecture Notes in Physics, vol. 669, 199 (2005), , Martin, J
  • Best unbiased estimates for microwave background anisotropies. Phys. Rev. D 56, 1924 (1997), , Grishchuk, L.P., Martin, J
  • Decoherence in quantum cosmology at the onset of inflation. Nucl. Phys. B 551, 374 (1999), , Barvinsky, A.O., Kamenshchik, A.Y., Kiefer, C., Mishakov, I.V
  • Padmanabhan, T., (1993) Structure Formation in the Universe, p. 364. , Cambridge University Press, Cambridge: Section 10.4
  • Boucher, W., Traschen, J., Semiclassical physics and quantum fluctuations (1988) Phys. Rev. D, 37, pp. 3522-3532
  • Weinberg, S., (2008) Cosmology, p. 476. , Oxford University Press, Oxford
  • Mott, N.F., The wave mechanics of α -ray tracks (1929) Proc. R. Soc. Lond., 126 (800), p. 79
  • Paz, J.P., Zurek, W.H., Environment-induced decoherence and the transition from quantum to classical (2002) Lecture Notes in Physics, 587. , In:, Heiss, D. ed. Springer, Berlin
  • Schlosshauer, M., (2007) Decoherence and the Quantum-to-Classical Transition, , Springer, Berlin
  • Joos, E., (2003) Decoherence and the Appearance of a Classical World in Quantum Theory, , Springer, Berlin
  • Castagnino, M., Fortin, S., Predicting decoherence in discrete models (2011) Int. J. Theory Phys., 50, pp. 2259-2267
  • Castagnino, M., Fortin, S., Lombardi, O., Is the decoherence of a system the result of its interaction with the environment? (2010) Mod. Phys. Lett. A, 25, pp. 1431-1439
  • Butterfield, J., Earman, J., (2007) Philosophy of Physics, Handbook of the Philosophy of Science, , eds), North-Holland Elsevier, Amsterdam
  • Harrison, E.R., Fluctuations at the threshold of classical cosmology (1970) Phys. Rev. D, 1, p. 2726
  • Zel’dovich, Y.B., A hypotesis, unifying the structure and the entropy of the universe (1972) Mon. Not. R. Astron. Soc., 160, p. 1
  • Lange, A.E., Cosmological parameters from first results of Boomerang (2001) Phys. Rev. D, 63, p. 042001
  • Hinshaw, G., (2003) Astrophys. J. Supp, 148, p. 135
  • Gorski, K.M., Power spectrum of primordial inhomogeneity determined from four year COBE DMR SKY Maps (1996) Astrophys. J., 464, p. L11
  • Bennett, C.L., First year wilkinson microwave anisotropy probe (WMAP) observations: preliminary results (2003) Astrophys. J. Suppl., 148, p. 1
  • Bennett, C., First year Wilkinson microwave anisotropy probe (WMAP) observations: foreground emission (2003) Astrophys. J. Suppl., 148, p. 97
  • Observations: cosmological parameter results, , Hinshaw, G. et al.: [WMAP Collaboration], Nine-year Wilkinson microwave anisotropy probe[astro-ph.CO]
  • Observations: power spectra and WMAP-derived parameters. Astrophys. J. Suppl. 192, 16 (2011)
  • Planck 2013 results. XV. CMB powerspectra and likelihood, , Ade, P.A.R.2013). [astro-ph.CO
  • Perez, A., Sahlmman, H., Sudarsky, D., On the quantum mechanical origin of the seeds of cosmic structure (2006) Class. Quantum Gravity, 23, p. 2317
  • Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure. JCAP 045, 1207 (2012), , Diez-Tejedor, A., Sudarsky, D.[gr-qc]
  • Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure. Phys. Rev. D 78, 043510 (2008), , de Unanue, A., Sudarsky, D.[gr-qc]
  • León García, G., Sudarsky, D., The slow roll condition and the amplitude of the primordial spectrum of cosmic fluctuations: contrasts and similarities of standard account and the “collapse scheme (2010) Class. Quantum Gravity, 27, p. 225017
  • Multiple quantum collapse of the inflaton field and its implications on the birth of cosmic structure. Class. Quantum Gravity, 28, 155010 (2011), , León García, G., De Unanue, A., Sudarsky, D.[gr-qc]
  • León García, G., Sudarsky, D., Novel possibility of observable non-Gaussianities in the inflationary spectrum of primordial inhomogeneities (2012) Sigma, 8, p. 024
  • The collapse of the wave function in the joint metric-matter quantization for inflation. Gen. Relativ. Gravity 44, 2965, (2012), , Diez-Tejedor, A., León García, G., Sudarsky, D.[gr-qc]
  • Cosmological constraints on nonstandard inflationary quantum collapse models. Phys. Rev. D 85, 123001 (2012), , Landau, S.J., Scoccola, C.G., Sudarsky, D.[astro-ph.CO]
  • Scully, M.O., Shea, R., Mc Cullen, J.D., State reduction oin quantum mechanics. A calculational example (1978) Phys. Rep., 43, pp. 485-498
  • Zurek, W.H., Environment-induced superselection rules (1982) Phys. Rev. D, 26, pp. 1862-1880
  • Zurek, W.A., Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? (1981) Phys. Rev. D, 24, pp. 1516-1525
  • Barbour, J.B., The timelessness of quantum gravity: I. The evidence from the classical theory (1994) Class. Quantum Gravity, 11, pp. 2853-2873
  • Barbour, J.B., The timelessness of quantum gravity: II. The apperearance of dynamics in statics configurations (1994) Class. Quantum Gravity, 11, pp. 2853-2873
  • Earman, J., (1996) World Enough and Space-Time, , MIT Press, Cambridge, MA
  • Cohen, D.W., (2011) An Introduction to Hilbert Space and Quantum Logic, , Springer, London
  • Holik, F., Massri, C., Ciancaglini, N., Convex quantum logic (2012) Int. J. Theor. Phys., 51, pp. 1600-1620
  • Holik, F., Massri, C., Plastino, A., Zuberman, L., On the lattice structure of probability spaces in quantum mechanics (2013) Int. J. Theory Phys., 52, pp. 1836-1876
  • Faye, J., Copenhagen interpretation of quantum mechanics (2008) The Stanford Encyclopedia of Philosophy, , http://plato.stanford.edu/archives/fall2008/entries/qm-copenhagen/, In:, Zalta, E.N, ed. Fall, Edition
  • Lombardi, O., Dieks, D., Modal interpretations of quantum mechanics (2012) The Stanford Encyclopedia of Philosophy, , http://plato.stanford.edu/archives/win2012/entries/qm-modal/, In:, Zalta, E.N, ed. Winter, Edition
  • Cohen-Tannoudji, C., Diu, B., Laloë, F., (1978) Quantum Mechanics, , Wiley, New York
  • Ballentine, L.E., (1990) Quantum Mechanics, , Prentice Hall, New York
  • van Fraassen, B.C., A formal approach to the philosophy of science (1972) Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain, pp. 303-366. , Colodny R, (ed), University of Pittsburgh Press, Pittsburgh
  • Bacciagaluppi, G., Kohen-Specker theorem in the modal interpretation of quantum mechanics (1995) Int. J. Theor. Phys., 34, pp. 1206-1215
  • Clifton, R., The properties of modal interpretations of quantum mechanics (1996) Br. J. Philos. Sci., 47, pp. 371-398
  • Vermaas, P.E., Two no-go theorems for modal interpretations of quantum mechanics (1999) Stud. Hist. Philos. Mod. Phys., 30, pp. 403-431
  • Bacciagaluppi, G., Dickson, M., Dynamics for modal interpretations (1999) Found. Phys., 29, pp. 1165-1201
  • Kochen, S., A new interpretation of quantum mechanics (1985) Symposium on the Foundations of Modern Physics, , In:, Mittelstaedt, P., Lahti, P. eds. World Scientific, Singapore
  • Dieks, D., The formalism of quantum theory: an objetive description of reality? (1988) Annalen der Physik, 7, pp. 174-190
  • Dieks, D., Quantum mechanics without the projection postulate and its realistic interpretation (1989) Found. Phys., 38, pp. 1397-1423
  • Dieks, D., Resolution of the measurement problem through decoherence of the quantum state (1989) Phys. Lett. A, 142, pp. 439-446
  • Bene, G., Dieks, D., A perspectival version of the modal interpretation of quantum mechanicsand the origin of macroscopic behaviour (2002) Found. Phys., 32, pp. 645-671
  • Lombardi, O., Fortin, S., Castagnino, M., The problem of identifying the system and the environment in the phenomenon of decoherence (2012) European Philosophy of Science Association (EPSA), pp. 161-174. , Regt HW, Hartmann S, Okasha S, (eds), Philosophical Issues in the Sciences, 3, Springer, Berlin
  • Castagnino, M., Fortin, S., Lombardi, O., Suppression of decoherence in a generalization of the spin-bath model (2010) J. Phys. A: Math. Theor., 43, p. 065304
  • Lombardi, O., Castagnino, M., A modal-Hamiltonian interpretation of quantum mechanics (2008) Stud. Hist. Philos. Mod. Phys., 39, pp. 380-443
  • Ardenghi, J.S., Castagnino, M., Lombardi, O., Modal Hamiltonian interpretation of quantum mechanics and Casimir operators: the road toward quantum field theory (2011) Int. J. Theor. Phys., 50, pp. 774-791
  • Bohm, D., A suggested interpretation of quantum theory in terms of “hidden” variables I (1952) Phys. Rev., 85, pp. 166-179
  • Bohm, D., A suggested interpretation of quantum theory in terms of “hidden” variables II (1952) Phys. Rev., 85, pp. 180-193
  • Valentini, A., Inflationary cosmology as a probe of primordial quantum mechanics (2010) Phys. Rev. D, 82, p. 063513
  • Holland, P.R., (1995) The Quantum Theory of Motion: An Account of the De Broglie-Bohm Causal Interpretation of Quantum Mechanics, , Cambridge University Press, Cambridge
  • Valentini, A., Inflationary cosmology as a probe of primordial quantum mechanics (2010) Phys. Rev. D, 82, p. 063513
  • Pinto-Neto, N., Santos, G., Struyve, W., Quantum-to-classical transition of primordial cosmological perturbations in de Broglie-Bohm quantum theory (2012) Phys. Rev. D, 85. , arXiv:1110.1339
  • Bohm, D., Proof that probability density approach | ψ| 2 in causal interpretations of the quantum theory (1953) Phys. Rev., 89, pp. 458-466
  • Vaidman, L., Many-worlds interpretation of quantum mechanics (2008) The Stanford Encyclopedia of Philosophy, , http://plato.stanford.edu/archives/fall2008/entries/qm-manyworlds/, In:, Zalta, E.N, ed. Fall, Edition
  • Everett, H., Relative state” formulation of quantum mechanics (1957) Rev. Mod. Phys., 29, pp. 454-462
  • Bacciagaluppi, G., The role of decoherence in quantum mechanics (2012) The Stanford Encyclopedia of Philosophy, , http://plato.stanford.edu/archives/win2012/entries/qm-decoherence/, In:, Zalta, E.N, ed. Winter, Edition
  • Griffiths, R.B., Consistent histories and the interpretation of quantum mechanics (1984) J. Stat. Phys., 36, pp. 219-272
  • Omnès, R., Logical reformulation of quantum mechanics. I. Foundations (1988) J. Stat. Phys., 53, pp. 893-932
  • Omnès, R., Logical reformulation of quantum mechanics. IV. Projectors in semiclassical physics (1989) J. Stat. Phys., 57, pp. 357-382
  • Gell-Mann, M., Hartle, J.B., Quantum mechanics in the light of quantum cosmology (1990) Complexity, Entropy, and the Physics of Information, pp. 425-458. , Zurek WH, (ed), Addison-Wesley, Reading, MA
  • Laura, R., Vanni, L., Time translation of quantum properties (2009) Found. Phys., 39, pp. 160-173
  • Vanni, L., Laura, R., The logic of quantum measurements (2013) Int. J. Theory Phys., 52, pp. 2386-2394
  • Losada, M., Vanni, L., Laura, R., Probabilities for time-dependent properties in classical and quantum mechanics (2013) Phys. Rev. A, 87, p. 052128
  • Losada, M., Laura, R., The formalism of generalized contexts and decay processes (2013) Int. J. Theor. Phys., 52, pp. 1289-1299
  • Weinberg, S., Collapse of the State Vector (2011) UTTG-18-11, (2011). arXiv, p. 6462
  • Hartle, J.B., Quantum physics and human language (2007) J. Phys. A, 40, p. 3101
  • Okon, E., Sudarsky, D., On the consistency of the consistent histories approach to quantum mechanics. Found (2014) Phys. 44, 19–33 (2014). arXiv, p. 1301
  • Quantum Cosmology Problems, , Hartle, J.B.:for the 21 s t Century (e-Print: gr-qc/9701022)
  • Generalized Quantum mechanics for Quantum Gravity, , Hartle, J.B.:(e-Print: gr-qc/0510126)
  • Kent, A., Consistent sets yield contrary inferences in quantum theory (1997) Phys. Rev. Lett., 87, p. 15
  • On the consistent histories approach to quantum mechanics. J. Statist. Phys. 82, 1575 (1996), , Dowker, F., Kent, A
  • Can the decoherent histories description of reality be considered satisfactory?. Phys. Lett. A 257, 247 (1999), , Bassi, A., Ghirardi, G.C
  • Bassi, A., Ghirardi, G.C., About the notion of truth in the decoherent histories approach: a reply to Griffiths (2000) Phys. Lett. A, 265, p. 153. , arXiv:quant-ph/9912065
  • Diosi, L., Gravitation and quantum mechanical localization of macro-objects (1984) Phys. Lett. A, 105, pp. 199-202
  • Diosi, L., A universal master equation for the gravitational violation of quantum mechanics (1987) Phys. Lett. A, 120, p. 377
  • Diosi, L., Models for universal reduction of macroscopic quantum fluctuations (1989) Phys. Lett. A, 40, p. 1165
  • Penrose, R., (1989) The Emperor’s New Mind, , Oxford University Press, Oxford
  • On gravity’s role in quantum state reduction (1996) Gen. Relativ. Gravity, 28, p. 581
  • Ghirardi, G.C., Rimini, A., Weber, T., A unified dynamics for micro and macro systems (1986) Phys. Rev. D, 34, p. 470
  • Pearle, P.M., Combining stochastic dynamical state-vector reduction with spontaneous localization (1989) Phys. Rev. A, 39, p. 2277
  • Bassi, A., Ghirardi, G.C., Dynamical reduction models (2003) Phys. Rept., 379, p. 257. , arXiv:quant-ph/0302164
  • Pearle, P., Reduction of the state vector by a nonlinear Schrodinger equation (1976) Phys. Rev. D, 13, p. 857
  • Pearle, P., Toward explaining why events occur (1979) Int. J. Theory Phys., 18, p. 489
  • Pearle, P., Experimental tests of dynamical state-vector reduction (1984) Phys. Rev. D, 29, p. 235
  • Pearle, P., Combining stochastic dynamical state vector reduction with spontaneous localization (1989) Phys. Rev. A, 39, p. 2277
  • Martin, J., Vennin, V., (2012) Peter, P.: Cosmological Inflation and the Quantum Measurement Problem (2012). arXiv, p. 1207
  • CSL Quantum Origin of the Primordial Fluctuation. Phys. Rev. D, 87, 104024 (2013), , Cañate, P., Pearl, P., Sudarsky, D.[gr-qc]
  • Quantum to Classical Transition of Inflationary Perturbations—Continuous Spontaneous Localization as a Possible Mechanism, , Das, S., Lochan, K., Sahu, S., Singh, T. P.[astro-ph.CO]
  • Benefits of objective collapse models for cosmology and quantum gravity. Found. Phys. 44 114–143 (2014), , Okon, E., Sudarsky, D.[gr-qc]
  • Myrvold, W.C., On peaceful coexistence: is the collapse postulate incompatible with relativity? (2002) Stud. Hist. Philos. Mod. Phys., 33, p. 435
  • On spontaneous wave function collapse and quantum field theory. Proc. Roy. Soc. Lond. A 462, 1897 (2006), , Tumulka, R
  • Bedingham, D.J., Relativistic state reduction dynamics. Found (2011) Phys. 41, 686 (2011). arXiv, p. 1003

Citas:

---------- APA ----------
Castagnino, M., Fortin, S., Laura, R. & Sudarsky, D. (2017) . Interpretations of Quantum Theory in the Light of Modern Cosmology. Foundations of Physics, 47(11), 1387-1422.
http://dx.doi.org/10.1007/s10701-017-0100-9
---------- CHICAGO ----------
Castagnino, M., Fortin, S., Laura, R., Sudarsky, D. "Interpretations of Quantum Theory in the Light of Modern Cosmology" . Foundations of Physics 47, no. 11 (2017) : 1387-1422.
http://dx.doi.org/10.1007/s10701-017-0100-9
---------- MLA ----------
Castagnino, M., Fortin, S., Laura, R., Sudarsky, D. "Interpretations of Quantum Theory in the Light of Modern Cosmology" . Foundations of Physics, vol. 47, no. 11, 2017, pp. 1387-1422.
http://dx.doi.org/10.1007/s10701-017-0100-9
---------- VANCOUVER ----------
Castagnino, M., Fortin, S., Laura, R., Sudarsky, D. Interpretations of Quantum Theory in the Light of Modern Cosmology. Found. Phys. 2017;47(11):1387-1422.
http://dx.doi.org/10.1007/s10701-017-0100-9