Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A specter is haunting the world, the specter of obesity. During the last decade, this pandemia has skyrocketed threatening children, adolescents and lower income families worldwide. Although driven by an increase in the consumption of ultraprocessed edibles of poor nutritional value, the obesogenic changes in contemporary human lifestyle affect people differently, revealing that some individuals are more prone to develop increased adiposity. During the last years, we performed a variety of genetic, evolutionary, biochemical and behavioral experiments that allowed us to understand how a group of neurons present in the arcuate nucleus of the hypothalamus regulate the expression of the proopiomelanocortin (Pomc) gene and induce satiety. We disentangled the neuronal transcriptional code of Pomc by identifying the cis-acting regulatory elements and primary transcription factors controlling hypothalamic Pomc expression and determined their functional importance in the regulation of food intake and adiposity. Altogether, our studies reviewed here shed light on the power and limitations of the mammalian central satiety pathways and may contribute to the development of individual and collective strategies to reduce the debilitating effects of the self-induced obesity pandemia. © 2017 Federation of European Biochemical Societies

Registro:

Documento: Artículo
Título:Molecular and functional genetics of the proopiomelanocortin gene, food intake regulation and obesity
Autor:Rubinstein, M.; Low, M.J.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, United States
Palabras clave:enhancer; epigenetics; exaptation; gene expression; melanocortins; mutant mice; transcription; transgenic mouse; brain nerve cell; enhancer region; food intake; gene; gene control; gene expression; gene function; genetic transcription; human; hypothalamus; lifestyle; molecular evolution; molecular genetics; nonhuman; nutritional value; obesity; Pomc gene; priority journal; Review; satiety; teleost; animal; food intake; gene expression regulation; genetics; obesity; pathophysiology; proopiomelanocortin; Animals; Appetite Regulation; Evolution, Molecular; Gene Expression Regulation; Humans; Obesity; Pro-Opiomelanocortin
Año:2017
Volumen:591
Número:17
Página de inicio:2593
Página de fin:2606
DOI: http://dx.doi.org/10.1002/1873-3468.12776
Título revista:FEBS Letters
Título revista abreviado:FEBS Lett.
ISSN:00145793
CODEN:FEBLA
CAS:proopiomelanocortin, 66796-54-1; Pro-Opiomelanocortin
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00145793_v591_n17_p2593_Rubinstein

Referencias:

  • Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., Friedman, J.M., Positional cloning of the mouse obese gene and its human homologue (1994) Nature, 372, pp. 425-432
  • Schwartz, M.W., Woods, S.C., Porte, D., Seeley, R.J., Baskin, D.G., Central nervous system control of food intake (2000) Nature, 404, pp. 661-671
  • Seeley, R.J., Berridge, K.C., The hunger games (2015) Cell, 160, pp. 805-806
  • Fan, W., Boston, B.A., Kesterson, R.A., Hruby, V.J., Cone, R.D., Role of melanocortinergic neurons in feeding and the agouti obesity syndrome (1997) Nature, 385, pp. 165-168
  • Aponte, Y., Atasoy, D., Sternson, S.M., AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training (2011) Nat Neurosci, 14, pp. 351-355
  • Chen, Y., Lin, Y.-C., Kuo, T.-W., Knight, Z., Sensory detection of food rapidly modulates arcuate feeding circuits (2015) Cell, 160, pp. 829-841
  • James, W.P.T., WHO recognition of the global obesity epidemic (2008) Int J Obes, 32, pp. S120-S126
  • Maes, H.H., Neale, M.C., Eaves, L.J., Genetic and environmental factors in relative body weight and human adiposity (1997) Behav Genet, 27, pp. 325-351
  • Stunkard, A.J., Harris, J.R., Pedersen, N.L., McClearn, G.E., The body-mass index of twins who have been reared apart (1990) N Engl J Med, 322, pp. 1483-1487
  • Barsh, G.S., Farooqi, I.S., O'Rahilly, S., Genetics of body-weight regulation (2000) Nature, 404, pp. 644-651
  • Silventoinen, K., Kaprio, J., Lahelma, E., Genetic and environmental contributions to the association between body height and educational attainment: a study of adult Finnish twins (2000) Behav Genet, 30, pp. 477-485
  • Carmichael, C.M., McGue, M., A cross-sectional examination of height, weight, and body mass index in adult twins (1995) J Gerontol A Biol Sci Med Sci, 50, pp. B237-B244
  • O'Rahilly, S., Montague, C.T., Farooqi, I.S., Whitehead, J.P., Soos, M.A., Rau, H., Wareham, N.J., Mohammed, S.N., Congenital leptin deficiency is associated with severe early-onset obesity in humans (1997) Nature, 387, pp. 903-908
  • Froguel, P., Clément, K., Vaisse, C., Lahlou, N., Cabrol, S., Pelloux, V., Cassuto, D., Chambaz, J., A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction (1998) Nature, 392, pp. 398-401
  • Farooqi, I.S., Matarese, G., Lord, G.M., Keogh, J.M., Lawrence, E., Agwu, C., Sanna, V., Fontana, S., Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency (2002) J Clin Invest, 110, pp. 1093-1103
  • Quarta, C., Sánchez-Garrido, M.A., Tschöp, M.H., Clemmensen, C., Renaissance of leptin for obesity therapy (2016) Diabetologia, 59, pp. 920-927
  • Krude, H., Biebermann, H., Luck, W., Horn, R., Brabant, G., Grüters, A., Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans (1998) Nat Genet, 19, pp. 155-157
  • Coll, A.P., Farooqi, I.S., O'Rahilly, S., The hormonal control of food intake (2007) Cell, 129, pp. 251-262
  • Kühnen, P., Clément, K., Wiegand, S., Blankenstein, O., Gottesdiener, K., Martini, L.L., Mai, K., Krude, H., Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist (2016) N Engl J Med, 375, pp. 240-246
  • Wheeler, E., Huang, N., Bochukova, E.G., Keogh, J.M., Lindsay, S., Garg, S., Henning, E., Wareham, N.J., Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity (2013) Nat Genet, 45, pp. 513-517
  • Thorleifsson, G., Walters, G.B., Gudbjartsson, D.F., Steinthorsdottir, V., Sulem, P., Helgadottir, A., Styrkarsdottir, U., Jonsdottir, I., Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity (2009) Nat Genet, 41, pp. 18-24
  • Gaulton, K.J., Ferreira, T., Lee, Y., Raimondo, A., Mägi, R., Reschen, M.E., Mahajan, A., Robertson, N., Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci (2015) Nat Genet, 47, pp. 1415-1425
  • Scuteri, A., Sanna, S., Chen, W.-M., Uda, M., Albai, G., Strait, J., Najjar, S., Usala, G., Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits (2007) PLoS Genet, 3
  • Loos, R.J.F., Bouchard, C., FTO: the first gene contributing to common forms of human obesity (2008) Obes Rev, 9, pp. 246-250
  • Comuzzie, A.G., Hixson, J.E., Almasy, L., Mitchell, B.D., Mahaney, M.C., Dyer, T.D., Stern, M.P., Blangero, J., A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2 (1997) Nat Genet, 15, pp. 273-276
  • Rotimi, C.N., Comuzzie, A.G., Lowe, W.L., Luke, A., Blangero, J., Cooper, R.S., The quantitative trait locus on chromosome 2 for serum leptin levels is confirmed in African-Americans (1999) Diabetes, 48, pp. 643-644
  • Delplanque, J., Barat-Houari, M., Dina, C., Gallina, P., Clément, K., Guy-Grand, B., Vasseur, F., Froguel, P., Linkage and association studies between the proopiomelanocortin (POMC) gene and obesity in Caucasian families (2000) Diabetologia, 43, pp. 1554-1557
  • Hixson, J.E., Almasy, L., Cole, S., Birnbaum, S., Mitchell, B.D., Mahaney, M.C., Stern, M.P., Comuzzie, A.G., Normal variation in leptin levels is associated with polymorphisms in the proopiomelanocortin gene, POMC (1999) J Clin Endocrinol Metab, 84, pp. 3187-3191
  • Raffin-Sanson, M.L., de Keyzer, Y., Bertagna, X., Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions (2003) Eur J Endocrinol, 149, pp. 79-90
  • Rubinstein, M., Mogil, J.S., Japón, M., Chan, E.C., Allen, R.G., Low, M.J., Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis (1996) Proc Natl Acad Sci USA, 93, pp. 3995-4000
  • Newell-Price, J., Proopiomelanocortin gene expression and DNA methylation: implications for Cushing's syndrome and beyond (2003) J Endocrinol, 177, pp. 365-372
  • Liu, B., Hammer, G.D., Rubinstein, M., Mortrud, M., Low, M.J., Identification of DNA elements cooperatively activating proopiomelanocortin gene expression in the pituitary glands of transgenic mice (1992) Mol Cell Biol, 12, pp. 3978-3990
  • Liu, B., Mortrud, M., Low, M.J., DNA elements with AT-rich core sequences direct pituitary cell-specific expression of the pro-opiomelanocortin gene in transgenic mice (1995) Biochem J, 312, pp. 827-832
  • Lamolet, B., Pulichino, A.M., Lamonerie, T., Gauthier, Y., Brue, T., Enjalbert, A., Drouin, J., A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins (2001) Cell, 104, pp. 849-859
  • Philips, A., Maira, M., Mullick, A., Chamberland, M., Lesage, S., Hugo, P., Drouin, J., Antagonism between Nur77 and glucocorticoid receptor for control of transcription (1997) Mol Cell Biol, 17, pp. 5952-5959
  • Poulin, G., Turgeon, B., Drouin, J., NeuroD1/beta2 contributes to cell-specific transcription of the proopiomelanocortin gene (1997) Mol Cell Biol, 17, pp. 6673-6682
  • Pulichino, A.-M., Vallette-Kasic, S., Tsai, J.P.-Y., Couture, C., Gauthier, Y., Drouin, J., Tpit determines alternate fates during pituitary cell differentiation (2003) Genes Dev, 17, pp. 738-747
  • Tremblay, J.J., Lanctôt, C., Drouin, J., The pan-pituitary activator of transcription, Ptx1 (pituitary homeobox 1), acts in synergy with SF-1 and Pit1 and is an upstream regulator of the Lim-homeodomain gene Lim3/Lhx3 (1998) Mol Endocrinol, 12, pp. 428-441
  • Langlais, D., Couture, C., Sylvain-Drolet, G., Drouin, J., A pituitary-specific enhancer of the POMC gene with preferential activity in corticotrope cells (2011) Mol Endocrinol, 25, pp. 348-359
  • Budry, L., Balsalobre, A., Gauthier, Y., Khetchoumian, K., L'Honore, A., Vallette, S., Brue, T., Drouin, J., The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling (2012) Genes Dev, 26, pp. 2299-2310
  • Drouin, J., 60 years of POMC: transcriptional and epigenetic regulation of POMC gene expression (2016) J Mol Endocrinol, 56, pp. T99-T112
  • Hammer, G.D., Fairchild-Huntress, V., Low, M.J., Pituitary-specific and hormonally regulated gene expression directed by the rat proopiomelanocortin promoter in transgenic mice (1990) Mol Endocrinol, 4, pp. 1689-1697
  • Rubinstein, M., Mortrud, M., Liu, B., Low, M.J., Rat and mouse proopiomelanocortin gene sequences target tissue-specific expression to the pituitary gland but not to the hypothalamus of transgenic mice (1993) Neuroendocrinology, 58, pp. 373-380
  • Young, J.I., Otero, V., Cerdán, M.G., Falzone, T.L., Chan, E.C., Low, M.J., Rubinstein, M., Authentic cell-specific and developmentally regulated expression of pro-opiomelanocortin genomic fragments in hypothalamic and hindbrain neurons of transgenic mice (1998) J Neurosci, 18, pp. 6631-6640
  • Cowley, M.A., Smart, J.L., Rubinstein, M., Cerdán, M.G., Diano, S., Horvath, T.L., Cone, R.D., Low, M.J., Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus (2001) Nature, 411, pp. 480-484
  • Bjørbaek, C., Kahn, B.B., Leptin signaling in the central nervous system and the periphery (2004) Recent Prog Horm Res, 59, pp. 305-331
  • Heisler, L.K., Cowley, M.A., Tecott, L.H., Fan, W., Low, M.J., Smart, J.L., Rubinstein, M., Holstege, H., Activation of central melanocortin pathways by fenfluramine (2002) Science, 297, pp. 609-611
  • Batterham, R.L., Cowley, M.A., Small, C.J., Herzog, H., Cohen, M.A., Dakin, C.L., Wren, A.M., Ghatei, M.A., Physiology: does gut hormone PYY3–36 decrease food intake in rodents? (reply) (2004) Nature, 430, pp. 650-654
  • Lam, D.D., Attard, C.A., Mercer, A.J., Myers, M.G., Rubinstein, M., Low, M.J., Conditional expression of Pomc in the Lepr-positive subpopulation of POMC neurons is sufficient for normal energy homeostasis and metabolism (2015) Endocrinology, 156, pp. 1292-1302
  • Cone, R.D., Anatomy and regulation of the central melanocortin system (2005) Nat Neurosci, 8, pp. 571-578
  • Jarvie, B.C., Hentges, S.T., Expression of GABAergic and glutamatergic phenotypic markers in hypothalamic proopiomelanocortin neurons (2012) J Comp Neurol, 520, pp. 3863-3876
  • Williams, K.W., Margatho, L.O., Lee, C.E., Choi, M., Lee, S., Scott, M.M., Elias, C.F., Elmquist, J.K., Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons (2010) J Neurosci, 30, pp. 2472-2479
  • Lam, B.Y.H., Cimino, I., Polex-Wolf, J., Nicole Kohnke, S., Rimmington, D., Iyemere, V., Heeley, N., Saraiva, L.R., Heterogeneity of hypothalamic pro-opiomelanocortin-expressing neurons revealed by single-cell RNA sequencing (2017) Mol Metab, 6, pp. 383-392
  • de Souza, F.S.J., Santangelo, A.M., Bumaschny, V., Avale, M.E., Smart, J.L., Low, M.J., Rubinstein, M., Identification of neuronal enhancers of the proopiomelanocortin gene by transgenic mouse analysis and phylogenetic footprinting (2005) Mol Cell Biol, 25, pp. 3076-3086
  • de Souza, F.S.J., Bumaschny, V.F., Low, M.J., Rubinstein, M., Subfunctionalization of expression and peptide domains following the ancient duplication of the proopiomelanocortin gene in teleost fishes (2005) Mol Biol Evol, 22, pp. 2417-2427
  • Santangelo, A.M., De Souza, F.S.J., Franchini, L.F., Bumaschny, V.F., Low, M.J., Rubinstein, M., Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene (2007) PLoS Genet, 3, pp. 1813-1826
  • Brosius, J., The contribution of RNAs and retroposition to evolutionary novelties (2003) Genetica, 118, pp. 99-116
  • Kazazian, H.H., Mobile elements: drivers of genome evolution (2004) Science, 303, pp. 1626-1632
  • Norris, J., Fan, D., Aleman, C., Marks, J.R., Futreal, P.A., Wiseman, R.W., Iglehart, J.D., McDonnell, D.P., Identification of a new subclass of Alu DNA repeats which can function as estrogen receptor-dependent transcriptional enhancers (1995) J Biol Chem, 270, pp. 22777-22782
  • Laperriere, D., Wang, T.-T., White, J.H., Mader, S., Widespread Alu repeat-driven expansion of consensus DR2 retinoic acid response elements during primate evolution (2007) BMC Genom, 8, p. 23
  • Babich, V., Aksenov, N., Alexeenko, V., Oei, S.L., Buchlow, G., Tomilin, N., Association of some potential hormone response elements in human genes with the Alu family repeats (1999) Gene, 239, pp. 341-349
  • Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Purvis, A., The delayed rise of present-day mammals (2007) Nature, 446, pp. 507-512
  • Smit, A.F., Identification of a new, abundant superfamily of mammalian LTR-transposons (1993) Nucleic Acids Res, 21, pp. 1863-1872
  • Franchini, L.F., Lopez-Leal, R., Nasif, S., Beati, P., Gelman, D.M., Low, M.J., de Souza, F.J.S., Rubinstein, M., Convergent evolution of two mammalian neuronal enhancers by sequential exaptation of unrelated retroposons (2011) Proc Natl Acad Sci, 108, pp. 15270-15275
  • Japón, M.A., Rubinstein, M., Low, M.J., In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development (1994) J Histochem Cytochem, 42, pp. 1117-1125
  • Padilla, S.L., Carmody, J.S., Zeltser, L.M., Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits (2010) Nat Med, 16, pp. 403-405
  • Sanz, E., Quintana, A., Deem, J.D., Steiner, R.A., Palmiter, R.D., McKnight, G.S., Fertility-regulating Kiss1 neurons arise from hypothalamic POMC-expressing progenitors (2015) J Neurosci, 35, pp. 5549-5556
  • Hong, J.-W., Hendrix, D.A., Levine, M.S., Shadow enhancers as a source of evolutionary novelty (2008) Science, 321, p. 1314
  • Perry, M.W., Boettiger, A.N., Bothma, J.P., Levine, M., Shadow enhancers foster robustness of Drosophila gastrulation (2010) Curr Biol, 20, pp. 1562-1567
  • Frankel, N., Davis, G.K., Vargas, D., Wang, S., Payre, F., Stern, D.L., Phenotypic robustness conferred by apparently redundant transcriptional enhancers (2010) Nature, 466, pp. 490-493
  • Cannavò, E., Khoueiry, P., Garfield, D.A., Geeleher, P., Zichner, T., Gustafson, E.H., Ciglar, L., Furlong, E.E.M., Shadow enhancers are pervasive features of developmental regulatory networks (2016) Curr Biol, 26, pp. 38-51
  • Lam, D.D., de Souza, F.S.J., Nasif, S., Yamashita, M., López Leal, R., Otero-Corchon, V., Meece, K., Wardlaw, S.L., Partially redundant enhancers cooperatively maintain mammalian pomc expression above a critical functional threshold (2014) PLoS Genet, 11
  • Berger, M.F., Badis, G., Gehrke, A.R., Talukder, S., Philippakis, A.A., Peña-Castillo, L., Alleyne, T.M., Chan, E.T., Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences (2008) Cell, 133, pp. 1266-1276
  • Thompson, C.L., Ng, L., Menon, V., Martinez, S., Lee, C.-K., Glattfelder, K., Sunkin, S.M., Dang, C., A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain (2014) Neuron, 83, pp. 309-323
  • Nasif, S., de Souza, F.S.J., González, L.E., Yamashita, M., Orquera, D.P., Low, M.J., Rubinstein, M., Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood (2015) Proc Natl Acad Sci, 112, pp. E1861-E1870
  • Lee, B., Lee, S., Lee, S.-K., Lee, J.W., The LIM-homeobox transcription factor Isl1 plays crucial roles in the development of multiple arcuate nucleus neurons (2016) Development, 143, pp. 3763-3773
  • de Souza, F.S.J., Nasif, S., López-Leal, R., Levi, D.H., Low, M.J., Rubinstein, M., The estrogen receptor α colocalizes with proopiomelanocortin in hypothalamic neurons and binds to a conserved motif present in the neuron-specific enhancer nPE2 (2011) Eur J Pharmacol, 660, pp. 181-187
  • Domené, S., Bumaschny, V.F., de Souza, F.S.J., Franchini, L.F., Nasif, S., Low, M.J., Rubinstein, M., Enhancer turnover and conserved regulatory function in vertebrate evolution (2013) Philos Trans R Soc Lond B Biol Sci, 368, p. 20130027
  • Bumaschny, V.F., Yamashita, M., Casas-Cordero, R., Otero-Corchón, V., de Souza, F.S.J., Rubinstein, M., Low, M.J., Obesity-programmed mice are rescued by early genetic intervention (2012) J Clin Invest, 122, pp. 4203-4212
  • Rosenbaum, M., Goldsmith, R., Bloomfield, D., Magnano, A., Weimer, L., Heymsfield, S., Gallagher, D., Leibel, R.L., Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight (2005) J Clin Invest, 115, pp. 3579-3586
  • Bray, G.A., Greenway, F.L., Pharmacological treatment of the overweight patient (2007) Pharmacol Rev, 59, pp. 151-184
  • Tremblay, A., Chaput, J.-P., Adaptive reduction in thermogenesis and resistance to lose fat in obese men (2009) Br J Nutr, 102, pp. 488-492
  • Rolls, B.J., Rowe, E.A., Turner, R.C., Persistent obesity in rats following a period of consumption of a mixed, high energy diet (1980) J Physiol, 298, pp. 415-427
  • Levin, B.E., Dunn-Meynell, A.A., Defense of body weight against chronic caloric restriction in obesity-prone and -resistant rats (2000) Am J Physiol Regul Integr Comp Physiol, 278, pp. R231-R237
  • Guo, J., Jou, W., Gavrilova, O., Hall, K.D., Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets (2009) PLoS ONE, 4
  • Chhabra, K.H., Adams, J.M., Jones, G.L., Yamashita, M., Schlapschy, M., Skerra, A., Rubinstein, M., Low, M.J., Reprogramming the body weight set point by a reciprocal interaction of hypothalamic leptin sensitivity and Pomc gene expression reverts extreme obesity (2016) Mol Metab, 5, pp. 869-881
  • Leibel, R.L., Molecular physiology of weight regulation in mice and humans (2008) Int J Obes, 32, pp. S98-S108
  • Schulkin, J., Allostasis: a neural behavioral perspective (2003) Horm Behav, 43, pp. 21-27. , discussion 28–30

Citas:

---------- APA ----------
Rubinstein, M. & Low, M.J. (2017) . Molecular and functional genetics of the proopiomelanocortin gene, food intake regulation and obesity. FEBS Letters, 591(17), 2593-2606.
http://dx.doi.org/10.1002/1873-3468.12776
---------- CHICAGO ----------
Rubinstein, M., Low, M.J. "Molecular and functional genetics of the proopiomelanocortin gene, food intake regulation and obesity" . FEBS Letters 591, no. 17 (2017) : 2593-2606.
http://dx.doi.org/10.1002/1873-3468.12776
---------- MLA ----------
Rubinstein, M., Low, M.J. "Molecular and functional genetics of the proopiomelanocortin gene, food intake regulation and obesity" . FEBS Letters, vol. 591, no. 17, 2017, pp. 2593-2606.
http://dx.doi.org/10.1002/1873-3468.12776
---------- VANCOUVER ----------
Rubinstein, M., Low, M.J. Molecular and functional genetics of the proopiomelanocortin gene, food intake regulation and obesity. FEBS Lett. 2017;591(17):2593-2606.
http://dx.doi.org/10.1002/1873-3468.12776