Artículo

Nieto Moreno, N.; Giono, L.E.; Cambindo Botto, A.E.; Muñoz, M.J.; Kornblihtt, A.R. "Chromatin, DNA structure and alternative splicing" (2015) FEBS Letters. 589(22):3370-3378
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Coupling of transcription and alternative splicing via regulation of the transcriptional elongation rate is a well-studied phenomenon. Template features that act as roadblocks for the progression of RNA polymerase II comprise histone modifications and variants, DNA-interacting proteins and chromatin compaction. These may affect alternative splicing decisions by inducing pauses or decreasing elongation rate that change the time-window for splicing regulatory sequences to be recognized. Herein we discuss the evidence supporting the influence of template structural modifications on transcription and splicing, and provide insights about possible roles of non-B DNA conformations on the regulation of alternative splicing. © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Chromatin, DNA structure and alternative splicing
Autor:Nieto Moreno, N.; Giono, L.E.; Cambindo Botto, A.E.; Muñoz, M.J.; Kornblihtt, A.R.
Filiación:Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Palabras clave:Alternative splicing; Chromatin structure; Non-B DNA; RNA polymerase II elongation; binding protein; cystic fibrosis transmembrane conductance regulator; DNA interacting protein; fibronectin; hemoglobin alpha chain; messenger RNA; protein bcl x; protein SRSF3; RNA polymerase II; serine arginine rich protein; transcription factor; unclassified drug; chromatin; DNA; alpha globin gene; alternative RNA splicing; base pairing; Bcl x gene; CFTR gene; chromatin structure; CpG island; DNA conformation; DNA methylation; DNA modification; DNA sequence; DNA structure; DNA template; DNA transcription; enzyme phosphorylation; exon; fibronectin gene; gene expression; genetic association; histone modification; human; intron; kinetics; nonhuman; nucleosome; priority journal; protein processing; Review; RNA processing; transcription elongation; transcription regulation; animal; chemistry; chromatin; genetic transcription; genetics; Alternative Splicing; Animals; Chromatin; DNA; Humans; Transcription, Genetic
Año:2015
Volumen:589
Número:22
Página de inicio:3370
Página de fin:3378
DOI: http://dx.doi.org/10.1016/j.febslet.2015.08.002
Título revista:FEBS Letters
Título revista abreviado:FEBS Lett.
ISSN:00145793
CODEN:FEBLA
CAS:cystic fibrosis transmembrane conductance regulator, 126880-72-6; fibronectin, 86088-83-7; DNA, 9007-49-2; Chromatin; DNA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00145793_v589_n22_p3370_NietoMoreno

Referencias:

  • Lavelle, C., Pack, unpack, bend, twist, pull, push: The physical side of gene expression (2014) Curr. Opin. Genet. Dev., 25, pp. 74-84
  • Srivastava, R., Ahn, S.H., Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function (2015) Biotechnol. Adv., 33, pp. 856-872
  • Heidemann, M., Hintermair, C., Voß, K., Eick, D., Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription (2013) Biochim. Biophys. Acta, 1829, pp. 55-62
  • Muñoz, M., De La Mata, M., Kornblihtt, A., The carboxy terminal domain of RNA polymerase II and alternative splicing (2010) Trends Biochem. Sci., 35, pp. 497-504
  • Laitem, C., Zaborowska, J., Isa, N.F., Kufs, J., Dienstbier, M., Murphy, S., CDK9 inhibitors define elongation checkpoints at both ends of RNA polymerase II-transcribed genes (2015) Nat. Struct. Mol. Biol., 22, pp. 396-403
  • Hsin, J.P., Manley, J.L., The RNA polymerase II CTD coordinates transcription and RNA processing (2012) Genes Dev.
  • Sainsbury, S.B.C., Cramer, P., Structural basis of transcription initiation by RNA polymerase II (2015) Nat. Rev. Mol. Cell Biol., 16, pp. 129-143
  • Zhou, Q., Li, T., Price, D.H., RNA polymerase II elongation control (2012) Annu. Rev. Biochem., 81, pp. 119-143
  • Nojima, T., Gomes, T., Grosso, A.R., Kimura, H., Dye, M.J., Dhir, S., Carmo-Fonseca, M., Proudfoot, N.J., Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing (2015) Cell, 161, pp. 526-540
  • Charles, G.D., Nasun, H., Xin, L., André, L.M., Leighton, C., John, T.L., Adam, S., Kraus, W.L., Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells (2013) Mol. Cell, 50
  • Jonkers, I., Kwak, H., Lis, J.T., Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons (2014) ELife, 3, p. e02407
  • Jonkers, I., Lis, J.T., Getting up to speed with transcription elongation by RNA polymerase II (2015) Nat. Rev. Mol. Cell Biol., 16, pp. 167-177
  • Alexander, R.D., Innocente, S.A., Barrass, J.D., Beggs, J.D., Splicing-dependent RNA polymerase pausing in yeast (2010) Mol. Cell, 40, pp. 582-593
  • Will, C.L., Lührmann, R., Spliceosome structure and function (2011) Cold Spring Harb. Perspect. Biol., 3
  • Boise, L.H., González-García, M., Postema, C.E., Ding, L., Lindsten, T., Turka, L.A., Mao, X., Thompson, C.B., Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death (1993) Cell, 74, pp. 597-608
  • Barash, Y., Calarco, J., Gao, W., Pan, Q., Wang, X., Shai, O., Blencowe, B., Frey, B., Deciphering the splicing code (2010) Nature, 465, pp. 53-59
  • Hansen, K.D., Lareau, L.F., Blanchette, M., Green, R.E., Meng, Q., Rehwinkel, J., Gallusser, F.L., Brenner, S.E., Genome-wide identification of alternative splice forms down-regulated by nonsense-mediated mRNA decay in Drosophila (2009) PLoS Genet., 5
  • Ramani, A., Calarco, J., Pan, Q., Mavandadi, S., Wang, Y., Nelson, A., Lee, L., Fraser, A., Genome-wide analysis of alternative splicing in Caenorhabditis elegans (2011) Genome Res., 21, pp. 342-348
  • Khodor, Y., Rodriguez, J., Abruzzi, K., Tang, C.-H.A., Marr, M., Rosbash, M., Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila (2011) Genes Dev., 25, pp. 2502-2512
  • Ameur, A., Zaghlool, A., Halvardson, J., Wetterbom, A., Gyllensten, U., Cavelier, L., Feuk, L., Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain (2011) Nat. Struct. Mol. Biol., 18, pp. 1435-1440
  • Kotovic, K., Lockshon, D., Boric, L., Neugebauer, K., Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast (2003) Mol. Cell. Biol., 23, pp. 5768-5779
  • Lacadie, S., Rosbash, M., Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5′ss base pairing in yeast (2005) Mol. Cell, 19, pp. 65-75
  • Listerman, I., Sapra, A., Neugebauer, K., Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells (2006) Nat. Struct. Mol. Biol., 13, pp. 815-822
  • Pandya-Jones, A., Black, D.L., Co-transcriptional splicing of constitutive and alternative exons (2009) RNA (New York, NY), 15, pp. 1896-1908
  • Tilgner, H., Knowles, D., Johnson, R., Davis, C., Chakrabortty, S., Djebali, S., Curado, J., Guigó, R., Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs (2012) Genome Res., 22, pp. 1616-1625
  • Kornblihtt, A.R., Schor, I.E., Alló, M., Dujardin, G., Petrillo, E., Muñoz, M.J., Alternative splicing: A pivotal step between eukaryotic transcription and translation (2013) Nat. Rev. Mol. Cell Biol., 14, pp. 153-165
  • Lazarev, D., Manley, J.L., Concurrent splicing and transcription are not sufficient to enhance splicing efficiency (2007) RNA (New York, NY), 13, pp. 1546-1557
  • McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S.D., Bentley, D.L., The C-terminal domain of RNA polymerase II couples mRNA processing to transcription (1997) Nature, 385, pp. 357-361
  • Cramer, P., Cáceres, J., Cazalla, D., Kadener, S., Muro, A., Baralle, F., Kornblihtt, A., Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer (1999) Mol. Cell, 4, pp. 251-258
  • Cramer, P., Pesce, C., Baralle, F., Kornblihtt, A., Functional association between promoter structure and transcript alternative splicing (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 11456-11460
  • Kadener, S., Cramer, P., Nogués, G., Cazalla, D., De La Mata, M., Fededa, J., Werbajh, S., Kornblihtt, A., Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing (2001) EMBO J., 20, pp. 5759-5768
  • Nogués, G., Kadener, S., Cramer, P., Bentley, D., Kornblihtt, A.R., Transcriptional activators differ in their abilities to control alternative splicing (2002) J. Biol. Chem., 277, pp. 43110-43114
  • Auboeuf, D., Dowhan, D., Kang, Y., Larkin, K., Lee, J., Berget, S., O'Malley, B., Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes (2004) Proc. Natl. Acad. Sci. U.S.A., 101, pp. 2270-2274
  • Kadener, S., Fededa, J., Rosbash, M., Kornblihtt, A., Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 8185-8190
  • Kornblihtt, A., De La Mata, M., Fededa, J., Munoz, M., Nogues, G., Multiple links between transcription and splicing (2004) RNA (New York, NY), 10, pp. 1489-1498
  • Batsché, E., Yaniv, M., Muchardt, C., The human SWI/SNF subunit Brm is a regulator of alternative splicing (2006) Nat. Struct. Mol. Biol., 13, pp. 22-29
  • Luco, R.F., Pan, Q., Tominaga, K., Blencowe, B.J., Pereira-Smith, O.M., Misteli, T., Regulation of alternative splicing by histone modifications (2010) Science (New York, NY), 327, pp. 996-1000
  • Saint-André, V., Batsché, E., Rachez, C., Muchardt, C., Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons (2011) Nat. Struct. Mol. Biol., 18, pp. 337-344
  • Schor, I.E., Rascovan, N., Pelisch, F., Alló, M., Kornblihtt, A.R., Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 4325-4330
  • Roberts, G., Gooding, C., Mak, H., Proudfoot, N., Smith, C., Co-transcriptional commitment to alternative splice site selection (1998) Nucleic Acids Res., 26, pp. 5568-5572
  • Dujardin, G., Lafaille, C., De La Mata, M., Marasco, L.E., Munoz, M.J., Le Jossic-Corcos, C., Corcos, L., Kornblihtt, A.R., How slow RNA polymerase II elongation favors alternative exon skipping (2014) Mol. Cell, 54, pp. 683-690
  • Montes, M., Cloutier, A., Sanchez-Hernandez, N., Michelle, L., Lemieux, B., Blanchette, M., Hernandez-Munain, C., Sune, C., TCERG1 regulates alternative splicing of the Bcl-x gene by modulating the rate of RNA polymerase II transcription (2012) Mol. Cell. Biol., 32, pp. 751-762
  • Muñoz, M.J., Pérez Santangelo, M.S., Paronetto, M.P., De La Mata, M., Pelisch, F., Boireau, S., Glover-Cutter, K., Kornblihtt, A.R., DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation (2009) Cell, 137, pp. 708-720
  • Ip, J., Schmidt, D., Pan, Q., Ramani, A., Fraser, A., Odom, D., Blencowe, B., Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation (2011) Genome Res., 21, pp. 390-401
  • Coulter, D., Greenleaf, A., A mutation in the largest subunit of RNA polymerase II alters RNA chain elongation in vitro (1985) J. Biol. Chem., 260, pp. 13190-13198
  • Boireau, S., Maiuri, P., Basyuk, E., De La Mata, M., Knezevich, A., Pradet-Balade, B., Bäcker, V., Bertrand, E., The transcriptional cycle of HIV-1 in real-time and live cells (2007) J. Cell Biol., 179, pp. 291-304
  • De La Mata, M., Alonso, C., Kadener, S., Fededa, J., Blaustein, M., Pelisch, F., Cramer, P., Kornblihtt, A., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol. Cell, 12, pp. 525-532
  • Das, R., Yu, J., Zhang, Z., Gygi, M., Krainer, A., Gygi, S., Reed, R., SR proteins function in coupling RNAP II transcription to pre-mRNA splicing (2007) Mol. Cell, 26, pp. 867-881
  • Monsalve, M., Wu, Z., Adelmant, G., Puigserver, P., Fan, M., Spiegelman, B.M., Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1 (2000) Mol. Cell, 6, pp. 307-316
  • De La Mata, M., Kornblihtt, A.R., RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20 (2006) Nat. Struct. Mol. Biol., 13, pp. 973-980
  • Vargas, D., Shah, K., Batish, M., Levandoski, M., Sinha, S., Marras, S., Schedl, P., Tyagi, S., Single-molecule imaging of transcriptionally coupled and uncoupled splicing (2011) Cell, 147, pp. 1054-1065
  • De La Mata, M., Lafaille, C., Kornblihtt, A.R., First come, first served revisited: Factors affecting the same alternative splicing event have different effects on the relative rates of intron removal (2010) RNA (New York, NY), 16, pp. 904-912
  • Close, P., East, P., Dirac-Svejstrup, A.B., Hartmann, H., Heron, M., Maslen, S., Chariot, A., Svejstrup, J.Q., DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation (2012) Nature, 484, pp. 386-389
  • Tessarz, P., Kouzarides, T., Histone core modifications regulating nucleosome structure and dynamics (2014) Nat. Rev. Mol. Cell Biol., 15, pp. 703-708
  • Flanagan, J.F., Mi, L.Z., Chruszcz, M., Cymborowski, M., Clines, K.L., Kim, Y., Minor, W., Khorasanizadeh, S., Double chromodomains cooperate to recognize the methylated histone H3 tail (2005) Nature, 438, pp. 1181-1185
  • Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., Kouzarides, T., Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain (2001) Nature, 410, pp. 120-124
  • Bannister, A.J., Kouzarides, T., Regulation of chromatin by histone modifications (2011) Cell Res., 21, pp. 381-395
  • Bintu, L., Ishibashi, T., Dangkulwanich, M., Wu, Y.Y., Lubkowska, L., Kashlev, M., Bustamante, C., Nucleosomal elements that control the topography of the barrier to transcription (2012) Cell, 151, pp. 738-749
  • Jimeno-Gonzalez, S., Ceballos-Chavez, M., Reyes, J.C., A positioned +1 nucleosome enhances promoter-proximal pausing (2015) Nucleic Acids Res., 43, pp. 3068-3078
  • Hodges, C., Bintu, L., Lubkowska, L., Kashlev, M., Bustamante, C., Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II (2009) Science, 325, pp. 626-628
  • Sheinin, M.Y., Li, M., Soltani, M., Luger, K., Wang, M.D., Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss (2013) Nat. Commun., 4, p. 2579
  • Petesch, S.J., Lis, J.T., Overcoming the nucleosome barrier during transcript elongation (2012) Trends Genet., 28, pp. 285-294
  • Belotserkovskii, B.P., Neil, A.J., Saleh, S.S., Shin, J.H., Mirkin, S.M., Hanawalt, P.C., Transcription blockage by homopurine DNA sequences: Role of sequence composition and single-strand breaks (2013) Nucleic Acids Res., 41, pp. 1817-1828
  • Subramanian, V., Fields, P.A., Boyer, L.A., H2A.Z: A molecular rheostat for transcriptional control (2015) F1000Prime Rep., 7. , 01
  • Campos, E.I., Reinberg, D., Histones: Annotating chromatin (2009) Annu. Rev. Genet., 43, pp. 559-599
  • Alló, M., Buggiano, V., Fededa, J.P., Petrillo, E., Schor, I., De La Mata, M., Agirre, E., Kornblihtt, A.R., Control of alternative splicing through siRNA-mediated transcriptional gene silencing (2009) Nat. Struct. Mol. Biol., 16, pp. 717-724
  • Schwartz, S., Meshorer, E., Ast, G., Chromatin organization marks exon-intron structure (2009) Nat. Struct. Mol. Biol., 16, pp. 990-995
  • Andersson, R., Enroth, S., Rada-Iglesias, A., Wadelius, C., Komorowski, J., Nucleosomes are well positioned in exons and carry characteristic histone modifications (2009) Genome Res., 19, pp. 1732-1741
  • Tilgner, H., Nikolaou, C., Althammer, S., Sammeth, M., Beato, M., Valcarcel, J., Guigo, R., Nucleosome positioning as a determinant of exon recognition (2009) Nat. Struct. Mol. Biol., 16, pp. 996-1001
  • Spies, N., Nielsen, C.B., Padgett, R.A., Burge, C.B., Biased chromatin signatures around polyadenylation sites and exons (2009) Mol. Cell, 36, pp. 245-254
  • Kolasinska-Zwierz, P., Down, T., Latorre, I., Liu, T., Liu, X.S., Ahringer, J., Differential chromatin marking of introns and expressed exons by H3K36me3 (2009) Nat. Genet., 41, pp. 376-381
  • Luco, R.F., Allo, M., Schor, I.E., Kornblihtt, A.R., Misteli, T., Epigenetics in alternative pre-mRNA splicing (2011) Cell, 144, pp. 16-26
  • Schübeler, D., Function and information content of DNA methylation (2015) Nature, 517, pp. 321-326
  • Jeltsch, A., Jurkowska, R.Z., New concepts in DNA methylation (2014) Trends Biochem. Sci., 39, pp. 310-318
  • Maunakea, A.K., Chepelev, I., Cui, K., Zhao, K., Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition (2013) Cell Res., 23, pp. 1256-1269
  • Shukla, S., Kavak, E., Gregory, M., Imashimizu, M., Shutinoski, B., Kashlev, M., Oberdoerffer, P., Oberdoerffer, S., CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing (2011) Nature, 479, pp. 74-79
  • Dickerson, R.E., DNA structure from A to Z (1992) Methods Enzymol., 211, pp. 67-111
  • Bansal, M., Kumar, A., Yella, V.R., Role of DNA sequence based structural features of promoters in transcription initiation and gene expression (2014) Curr. Opin. Struct. Biol., 25, pp. 77-85
  • Vargason, J.M., Henderson, K., Ho, S., A crystallographic map of the transition from B-DNA to A-DNA (2001) Proc. Natl. Acad. Sci.
  • Flatters, D., Young, M., Beveridge, D.L., Lavery, R., Conformational properties of the TATA-box binding sequence of DNA (1997) J. Biomol. Struct. Dyn., 14, pp. 757-765
  • Herbert, A., Rich, A., Left-handed Z-DNA: Structure and function (1999) Structural Biology and Functional Genomics, pp. 53-53. , Springer: USA
  • Temiz, N.A., Donohue, D.E., Bacolla, A., Luke, B.T., Collins, J.R., The role of methylation in the intrinsic dynamics of B- and Z-DNA (2011) PLoS ONE, 7
  • Ha, S.C., Lowenhaupt, K., Rich, A., Kim, Y.G., Kim, K.K., Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases (2005) Nature, 437, pp. 1183-1186
  • Tsai, Z.T., Chu, W.Y., Cheng, J.H., Tsai, H.K., Associations between intronic non-B DNA structures and exon skipping (2014) Nucleic Acids Res., 42, pp. 739-747
  • Bochman, M.L., Paeschke, K., Zakian, V.A., DNA secondary structures: Stability and function of G-quadruplex structures (2012) Nat. Rev. Genet., 13, pp. 770-780
  • Belotserkovskii, B.P., Mirkin, S.M., Hanawalt, P.C., DNA sequences that interfere with transcription: Implications for genome function and stability (2013) Chem. Rev., 113, pp. 8620-8637
  • Van Dyke, M., Do DNA triple helices and quadruplexes have a role in transcription? (2005) DNA Conformation and Transcription, pp. 105-105. , Springer
  • Pandey, S., Ogloblina, A.M., Belotserkovskii, B.P., Dolinnaya, N.G., Yakubovskaya, M.G., Mirkin, S.M., Hanawalt, P.C., Transcription blockage by stable H-DNA analogs in vitro (2015) Nucleic Acids Res.
  • Buske, F.A., Mattick, J.S., Bailey, T.L., Potential in vivo roles of nucleic acid triple-helices (2011) RNA Biol., 8, pp. 427-439
  • Brooks, T.A., Kendrick, S., Hurley, L., Making sense of G-quadruplex and i-motif functions in oncogene promoters (2010) FEBS J., 277, pp. 3459-3469
  • De, S., Michor, F., DNA secondary structures and epigenetic determinants of cancer genome evolution (2011) Nat. Struct. Mol. Biol., 18, pp. 950-955
  • Schiavone, D., Guilbaud, G., Murat, P., Papadopoulou, C., Sarkies, P., Prioleau, M.N., Balasubramanian, S., Sale, J.E., Determinants of G quadruplex-induced epigenetic instability in REV1-deficient cells (2014) EMBO J., 33, pp. 2507-2520
  • Uribe, D.J., Guo, K., Shin, Y.J., Sun, D., Heterogeneous nuclear ribonucleoprotein K and nucleolin as transcriptional activators of the vascular endothelial growth factor promoter through interaction with secondary DNA structures (2011) Biochemistry, 50, pp. 3796-3806
  • Nelson, L.D., Bender, C., Mannsperger, H., Buergy, D., Kambakamba, P., Mudduluru, G., Korf, U., Allgayer, H., Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer (2012) Mol. Cancer, 11, p. 38
  • Gray, L.T., Vallur, A.C., Eddy, J., Maizels, N., G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD (2014) Nat. Chem. Biol., 10, pp. 313-318
  • Guo, M., Hundseth, K., Ding, H., Vidhyasagar, V., Inoue, A., Nguyen, C.H., Zain, R., Wu, Y., A distinct triplex DNA unwinding activity of ChlR1 helicase (2015) J. Biol. Chem., 290, pp. 5174-5189
  • Chatterjee, S., Pal, J.K., Role of 5′- and 3′-untranslated regions of mRNAs in human diseases (2009) Biol. Cell, 101, pp. 251-262
  • Castillo Bosch, P., Segura-Bayona, S., Koole, W., Van Heteren, J.T., Dewar, J.M., Tijsterman, M., Knipscheer, P., FANCJ promotes DNA synthesis through G-quadruplex structures (2014) EMBO J., 33, pp. 2521-2533
  • Hamperl, S., Cimprich, K.A., The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability (2014) DNA Repair (Amst), 19, pp. 84-94
  • Skourti-Stathaki, K., Kamieniarz-Gdula, K., Proudfoot, N.J., R-loops induce repressive chromatin marks over mammalian gene terminators (2014) Nature, 516, pp. 436-439
  • Von Hacht, A., Seifert, O., Menger, M., Schutze, T., Arora, A., Konthur, Z., Neubauer, P., Kurreck, J., Identification and characterization of RNA guanine-quadruplex binding proteins (2014) Nucleic Acids Res., 42, pp. 6630-6644
  • Marcel, V., Tran, P.L., Sagne, C., Martel-Planche, G., Vaslin, L., Teulade-Fichou, M.P., Hall, J., Van Dyck, E., G-quadruplex structures in TP53 intron 3: Role in alternative splicing and in production of p53 mRNA isoforms (2011) Carcinogenesis, 32, pp. 271-278
  • Ribeiro, M.M., Teixeira, G.S., Martins, L., Marques, M.R., De Souza, A.P., Line, S.R., G-quadruplex formation enhances splicing efficiency of PAX9 intron 1 (2015) Hum. Genet., 134, pp. 37-44
  • Melko, M., Douguet, D., Bensaid, M., Zongaro, S., Verheggen, C., Gecz, J., Bardoni, B., Functional characterization of the AFF (AF4/FMR2) family of RNA-binding proteins: Insights into the molecular pathology of FRAXE intellectual disability (2011) Hum. Mol. Genet., 20, pp. 1873-1885

Citas:

---------- APA ----------
Nieto Moreno, N., Giono, L.E., Cambindo Botto, A.E., Muñoz, M.J. & Kornblihtt, A.R. (2015) . Chromatin, DNA structure and alternative splicing. FEBS Letters, 589(22), 3370-3378.
http://dx.doi.org/10.1016/j.febslet.2015.08.002
---------- CHICAGO ----------
Nieto Moreno, N., Giono, L.E., Cambindo Botto, A.E., Muñoz, M.J., Kornblihtt, A.R. "Chromatin, DNA structure and alternative splicing" . FEBS Letters 589, no. 22 (2015) : 3370-3378.
http://dx.doi.org/10.1016/j.febslet.2015.08.002
---------- MLA ----------
Nieto Moreno, N., Giono, L.E., Cambindo Botto, A.E., Muñoz, M.J., Kornblihtt, A.R. "Chromatin, DNA structure and alternative splicing" . FEBS Letters, vol. 589, no. 22, 2015, pp. 3370-3378.
http://dx.doi.org/10.1016/j.febslet.2015.08.002
---------- VANCOUVER ----------
Nieto Moreno, N., Giono, L.E., Cambindo Botto, A.E., Muñoz, M.J., Kornblihtt, A.R. Chromatin, DNA structure and alternative splicing. FEBS Lett. 2015;589(22):3370-3378.
http://dx.doi.org/10.1016/j.febslet.2015.08.002