Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


The mechanisms involved in bidirectional transport along microtubules remain largely unknown. We explored the collective action of kinesin-2 and dynein motors during transport of melanosomes in Xenopus laevis melanophores. These motors are attached to organelles through accessory proteins establishing a complex molecular linker. We determined both the stiffness of this linker and the organelles speed and observed that these parameters depended on the organelle size and cargo direction. Our results suggest that melanosome transport is driven by two dissimilar teams: whereas dynein motors compete with kinesin-2 affecting the properties of plus-end directed organelles, kinesin-2 does not seem to play a similar role during minus-end transport. © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.


Documento: Artículo
Título:Asymmetries in kinesin-2 and cytoplasmic dynein contributions to melanosome transport
Autor:De Rossi, M.C.; De Rossi, M.E.; Sued, M.; Rodríguez, D.; Bruno, L.; Levi, V.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Ciudad de Buenos Aires, CP1428, Argentina
Instituto de Astronomía y Física Del Espacio, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Ciudad de Buenos Aires, CP1428, Argentina
Instituto de Cálculo, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Ciudad de Buenos Aires, CP1428, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBA-CONICET, Ciudad Universitaria, Ciudad de Buenos Aires, CP1428, Argentina
Palabras clave:Intracellular transport; Molecular motors; Single particle tracking; Xenopus laevis melanophores; cytoplasmic dynein; kinesin 2; molecular motor; cytoplasmic dynein; kinesin; Xenopus protein; animal cell; Article; cell aggregation; cell culture; cell organelle; cell transport; elasticity; mathematical model; melanophore; melanosome; microtubule; nonhuman; priority journal; Xenopus laevis; animal; melanosome; metabolism; transport at the cellular level; Animals; Biological Transport; Cytoplasmic Dyneins; Kinesin; Melanosomes; Xenopus laevis; Xenopus Proteins
Página de inicio:2763
Página de fin:2768
Título revista:FEBS Letters
Título revista abreviado:FEBS Lett.
CAS:Cytoplasmic Dyneins; Kinesin; Xenopus Proteins


  • Mallik, R., Gross, S.P., Molecular motors: Strategies to get along (2004) Curr. Biol., 14, pp. R971-R982
  • Vale, R.D., The molecular motor toolbox for intracellular transport (2003) Cell, 112, pp. 467-480
  • Ishii, Y., Yanagida, T., Single molecule measurements and molecular motors (2003) Molecular Motors, , M. Schliwa, Wiley-VCH Munchen
  • Bruno, L., Echarte, M.M., Levi, V., Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles (2008) Cell Biochem. Biophys., 52, pp. 191-201
  • Brunstein, M., Bruno, L., Desposito, M., Levi, V., Anomalous dynamics of melanosomes driven by myosin-V in Xenopus laevis melanophores (2009) Biophys. J., 97, pp. 1548-1557
  • Levi, V., Gelfand, V.I., Serpinskaya, A.S., Gratton, E., Melanosomes transported by myosin-V in Xenopus melanophores perform slow 35 nm steps (2006) Biophys. J., 90, pp. L07-L09
  • Levi, V., Serpinskaya, A.S., Gratton, E., Gelfand, V., Organelle transport along microtubules in Xenopus melanophores: Evidence for cooperation between multiple motors (2006) Biophys. J., 90, pp. 318-327
  • Hendricks, A.G., Perlson, E., Ross, J.L., Schroeder, H.W., III, Tokito, M., Holzbaur, E.L., Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport (2010) Curr. Biol., 20, pp. 697-702
  • Gross, S.P., Welte, M.A., Block, S.M., Wieschaus, E.F., Coordination of opposite-polarity microtubule motors (2002) J. Cell Biol., 156, pp. 715-724
  • Fu, M.M., Holzbaur, E.L., JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors (2013) J. Cell Biol., 202, pp. 495-508
  • Laib, J.A., Marin, J.A., Bloodgood, R.A., Guilford, W.H., The reciprocal coordination and mechanics of molecular motors in living cells (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 3190-3195
  • Soppina, V., Rai, A.K., Ramaiya, A.J., Barak, P., Mallik, R., Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 19381-19386
  • Blehm, B.H., Selvin, P.R., Single-molecule fluorescence and in vivo optical traps: How multiple dyneins and kinesins interact (2014) Chem. Rev., 114, pp. 3335-3352
  • Nascimento, A.A., Roland, J.T., Gelfand, V.I., Pigment cells: A model for the study of organelle transport (2003) Annu. Rev. Cell Dev. Biol., 19, pp. 469-491
  • Rozdzial, M.M., Haimo, L.T., Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation (1986) Cell, 47, pp. 1061-1070
  • Sammak, P.J., Adams, S.R., Harootunian, A.T., Schliwa, M., Tsien, R.Y., Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: Direct measurement by fluorescence ratio imaging (1992) J. Cell Biol., 117, pp. 57-72
  • Kashina, A., Rodionov, V., Intracellular organelle transport: Few motors, many signals (2005) Trends Cell Biol., 15, pp. 396-398
  • Ikeda, K., Zhapparova, O., Brodsky, I., Semenova, I., Tirnauer, J.S., Zaliapin, I., Rodionov, V., CK1 activates minus-end-directed transport of membrane organelles along microtubules (2011) Mol. Biol. Cell, 22, pp. 1321-1329
  • Reilein, A.R., Tint, I.S., Peunova, N.I., Enikolopov, G.N., Gelfand, V.I., Regulation of organelle movement in melanophores by protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2A (PP2A) (1998) J. Cell Biol., 142, pp. 803-813
  • Kashina, A.S., Semenova, I.V., Ivanov, P.A., Potekhina, E.S., Zaliapin, I., Rodionov, V.I., Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles (2004) Curr. Biol., 14, pp. 1877-1881
  • Deacon, S.W., Nascimento, A., Serpinskaya, A.S., Gelfand, V.I., Regulation of bidirectional melanosome transport by organelle bound MAP kinase (2005) Curr. Biol., 15, pp. 459-463
  • Nilsson, H., Wallin, M., Evidence for several roles of dynein in pigment transport in melanophores (1997) Cell Motil. Cytoskeleton, 38, pp. 397-409
  • Tuma, M.C., Zill, A., Le Bot, N., Vernos, I., Gelfand, V., Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores (1998) J. Cell Biol., 143, pp. 1547-1558
  • Rogers, S.L., Karcher, R.L., Roland, J.T., Minin, A.A., Gelfand, V.I., Regulation of melanosome movement in the cell cycle by reversible association with myosin v (1999) J. Cell Sci., 146, pp. 1265-1276
  • Gross, S.P., Tuma, M.C., Deacon, S.W., Serpinskaya, A.S., Reilein, A.R., Gelfand, V.I., Interactions and regulation of molecular motors in Xenopus melanophores (2002) J. Cell Biol., 156, pp. 855-865
  • De Rossi, M.C., Bruno, L., Wolosiuk, A., Desposito, M.A., Levi, V., When size does matter: Organelle size influences the properties of transport mediated by molecular motors (2013) Biochim. Biophys. Acta, 1830, pp. 5095-5103
  • Fu, M.M., Holzbaur, E.L., Integrated regulation of motor-driven organelle transport by scaffolding proteins (2014) Trends Cell Biol., 24, pp. 564-574
  • Kural, C., Kim, H., Syed, S., Goshima, G., Gelfand, V.I., Selvin, P.R., Kinesin and dynein move a peroxisome in vivo: A tug-of-war or coordinated movement? (2005) Science, 308, pp. 1469-1472
  • Semenova, I., Regulation of microtubule-based transport by MAP4 (2014) Mol. Biol. Cell, 25, pp. 3119-3132
  • Hill, D.B., Plaza, M.J., Bonin, K., Holzwarth, G., Fast vesicle transport in PC12 neurites: Velocities and forces (2004) Eur. Biophys. J., 33, pp. 623-632
  • Luby-Phelps, K., Castle, P.E., Taylor, D.L., Lanni, F., Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells (1987) Proc. Natl. Acad. Sci. U.S.A., 84, pp. 4910-4913
  • Bursac, P., Lenormand, G., Fabry, B., Oliver, M., Weitz, D.A., Viasnoff, V., Butler, J.P., Fredberg, J.J., Cytoskeletal remodelling and slow dynamics in the living cell (2005) Nat. Mater., 4, pp. 557-561
  • Fabry, B., Maksym, G.N., Butler, J.P., Glogauer, M., Navajas, D., Fredberg, J.J., Scaling the microrheology of living cells (2001) Phys. Rev. Lett., 87, p. 148102
  • Lau, A.W., Hoffman, B.D., Davies, A., Crocker, J.C., Lubensky, T.C., Microrheology, stress fluctuations, and active behavior of living cells (2003) Phys. Rev. Lett., 91, p. 198101
  • Mason, T.G., Weitz, D.A., Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids (1995) Phys. Rev. Lett., 74, pp. 1250-1253
  • Efremov, A.K., Radhakrishnan, A., Tsao, D.S., Bookwalter, C.S., Trybus, K.M., Diehl, M.R., Delineating cooperative responses of processive motors in living cells (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. E334-E343
  • Bandyopadhyay, D., Cyphersmith, A., Zapata, J.A., Kim, Y.J., Payne, C.K., Lysosome transport as a function of lysosome diameter (2014) PLoS One, 9, p. e86847
  • Bhat, D., Gopalakrishnan, M., Effectiveness of a dynein team in a tug of war helped by reduced load sensitivity of detachment: Evidence from the study of bidirectional endosome transport in D. Discoideum (2012) Phys. Biol., 9, p. 046003
  • Bryantseva, S.A., Zhapparova, O.N., Bidirectional transport of organelles: Unity and struggle of opposing motors (2012) Cell Biol. Int., 36, pp. 1-6
  • Schliwa, M., Woehlke, G., Molecular motors (2003) Nature, 422, pp. 759-765
  • Schroer, T.A., Dynactin (2004) Annu. Rev. Cell Dev. Biol., 20, pp. 759-779
  • Vallee, R.B., McKenney, R.J., Ori-McKenney, K.M., Multiple modes of cytoplasmic dynein regulation (2012) Nat. Cell Biol., 14, pp. 224-230
  • Deacon, S.W., Serpinskaya, A.S., Vaughan, P.S., Lopez Fanarraga, M., Vernos, I., Vaughan, K.T., Gelfand, V.I., Dynactin is required for bidirectional organelle transport (2003) J. Cell Biol., 160, pp. 297-301
  • Kardon, J.R., Vale, R.D., Regulators of the cytoplasmic dynein motor (2009) Nat. Rev. Mol. Cell Biol., 10, pp. 854-865
  • Berezuk, M.A., Schroer, T.A., Dynactin enhances the processivity of kinesin-2 (2007) Traffic, 8, pp. 124-129
  • Tripathy, S.K., Weil, S.J., Chen, C., Anand, P., Vallee, R.B., Gross, S.P., Autoregulatory mechanism for dynactin control of processive and diffusive dynein transport (2014) Nat. Cell Biol., 16, pp. 1192-1201
  • Bruno, L., Salierno, M., Wetzler, D.E., Desposito, M.A., Levi, V., Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells (2011) PLoS One, 6, p. e18332
  • Bouzat, S., Levi, V., Bruno, L., Transport properties of melanosomes along microtubules interpreted by a tug-of-war model with loose mechanical coupling (2012) PLoS One, 7, p. e43599
  • Rogers, S.L., Tint, I.S., Fanapour, P.C., Gelfand, V.I., Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 3720-3725
  • Wasserman, L., (2010) All of Statistics: A Concise Course in Statistical Inference, , Springer-Verlag New York
  • Muller, M.J., Klumpp, S., Lipowsky, R., Bidirectional transport by molecular motors: Enhanced processivity and response to external forces (2010) Biophys. J., 98, pp. 2610-2618
  • Kunwar, A., Mogilner, A., Robust transport by multiple motors with nonlinear force-velocity relations and stochastic load sharing (2010) Phys. Biol., 7, p. 16012
  • Kunwar, A., Mechanical stochastic tug-of-war models cannot explain bidirectional lipid-droplet transport (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 18960-18965
  • Kunwar, A., Vershinin, M., Xu, J., Gross, S.P., Stepping, strain gating, and an unexpected force-velocity curve for multiple-motor-based transport (2008) Curr. Biol., 18, pp. 1173-1183
  • Bouzat, S., Falo, F., The influence of direct motor-motor interaction in models for cargo transport by a single team of motors (2010) Phys. Biol., 7, p. 046009
  • King, S.J., Schroer, T.A., Dynactin increases the processivity of the cytoplasmic dynein motor (2000) Nat. Cell Biol., 2, pp. 20-24
  • Hendricks, A.G., Holzbaur, E.L., Goldman, Y.E., Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 18447-18452
  • Nam, W., Epureanu, B.I., Highly loaded behavior of kinesins increases the robustness of transport under high resisting loads (2015) PLoS Comput. Biol., 11, p. e1003981
  • Blehm, B.H., Schroer, T.A., Trybus, K.M., Chemla, Y.R., Selvin, P.R., In vivo optical trapping indicates kinesin's stall force is reduced by dynein during intracellular transport (2013) Proc. Natl. Acad. Sci. U.S.A., 110, pp. 3381-3386
  • Schroeder, H.W., III, Hendricks, A.G., Ikeda, K., Shuman, H., Rodionov, V., Ikebe, M., Goldman, Y.E., Holzbaur, E.L., Force-dependent detachment of kinesin-2 biases track switching at cytoskeletal filament intersections (2012) Biophys. J., 103, pp. 48-58


---------- APA ----------
De Rossi, M.C., De Rossi, M.E., Sued, M., Rodríguez, D., Bruno, L. & Levi, V. (2015) . Asymmetries in kinesin-2 and cytoplasmic dynein contributions to melanosome transport. FEBS Letters, 589(19), 2763-2768.
---------- CHICAGO ----------
De Rossi, M.C., De Rossi, M.E., Sued, M., Rodríguez, D., Bruno, L., Levi, V. "Asymmetries in kinesin-2 and cytoplasmic dynein contributions to melanosome transport" . FEBS Letters 589, no. 19 (2015) : 2763-2768.
---------- MLA ----------
De Rossi, M.C., De Rossi, M.E., Sued, M., Rodríguez, D., Bruno, L., Levi, V. "Asymmetries in kinesin-2 and cytoplasmic dynein contributions to melanosome transport" . FEBS Letters, vol. 589, no. 19, 2015, pp. 2763-2768.
---------- VANCOUVER ----------
De Rossi, M.C., De Rossi, M.E., Sued, M., Rodríguez, D., Bruno, L., Levi, V. Asymmetries in kinesin-2 and cytoplasmic dynein contributions to melanosome transport. FEBS Lett. 2015;589(19):2763-2768.